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1 SEQUENTIAL MONTE CARLO

1.1 introduction

SequentialMonteCarlo (smc)methods are a class of sampling algorithms that combine importance sampling
and resampling. They have been primarily used as “particle filters” to solve optimal filtering problems; see,
for example, Cappé, Godsill, and Moulines (2007) and Doucet and Johansen (2011) for recent reviews. They
are also used in a static setting where a target distribution is of interest, for example, for the purpose of
Bayesian modeling. This was proposed by Del Moral, Doucet, and Jasra (2006b) and developed by Peters
(2005) and Del Moral, Doucet, and Jasra (2006a). This framework involves the construction of a sequence
of artificial distributions on spaces of increasing dimensions which admit the distributions of interest as
particular marginals.

smc algorithms are perceived as being difficult to implement while general tools were not available
until the development of Johansen (2009), which provided a general framework for implementing smc
algorithms. smc algorithms admit natural and scalable parallelization. However, there are only parallel
implementations of smc algorithms for many problem specific applications, usually associated with specific
smc related researches. Lee et al. (2010) studied the parallelization of smc algorithms on gpus with some
generality. There are few general tools to implement smc algorithms on parallel hardware though multicore
cpus are very common today and computing on specialized hardware such as gpus are more and more
popular.

The purpose of the current work is to provide a general framework for implementing smc algorithms
on both sequential and parallel hardware. There are two main goals of the presented framework. The first
is reusability. It will be demonstrated that the same implementation source code can be used to build a
serialized sampler, or using different programming models (for example, OpenMP and Intel Threading
Building Blocks) to build parallelized samplers formulticore cpus. The second is extensibility. It is possible to
write a backend for vSMC to use new parallel programming models while reusing existing implementations.
It is also possible to enhance the library to improve performance for specific applications. Almost all
components of the library can be reimplemented by users and thus if the default implementation is not
suitable for a specific application, they can be replaced while being integrated with other components
seamlessly.

1.2 sequential importance sampling and resampling

Importance sampling is a technique which allows the calculation of the expectation of a function 𝜑 with
respect to a distribution 𝜋 using samples from some other distribution 𝜂with respect to which 𝜋 is absolutely
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sequential monte carlo

continuous, based on the identity,

𝔼𝜋[𝜑(𝑋)] = ∫ 𝜑(𝑥)𝜋(𝑥) d 𝑥 = ∫
𝜑(𝑥)𝜋(𝑥)
𝜂(𝑥)
𝜂(𝑥) d 𝑥 = 𝔼𝜂[

𝜑(𝑋)𝜋(𝑋)
𝜂(𝑋)
] (1.1)

And thus, let {𝑋(𝑖)}𝑁𝑖=1 be samples from 𝜂, then 𝔼𝜋[𝜑(𝑋)] can be approximated by

�̂�1 =
1
𝑁

𝑁

∑
𝑖=1

𝜑(𝑋(𝑖))𝜋(𝑋(𝑖))
𝜂(𝑋(𝑖))

(1.2)

In practice 𝜋 and 𝜂 are often only known up to some normalizing constants, which can be estimated using
the same samples. Let 𝑤(𝑖) = 𝜋(𝑋(𝑖))/𝜂(𝑋(𝑖)), then we have

�̂�2 =
∑𝑁𝑖=1𝑤

(𝑖)𝜑(𝑋(𝑖))

∑𝑁𝑖=1𝑤(𝑖)
(1.3)

or

�̂�3 =
𝑁

∑
𝑖=1
𝑊(𝑖)𝜑(𝑋(𝑖)) (1.4)

where𝑊(𝑖) ∝ 𝑤(𝑖) and are normalized such that ∑𝑁𝑖=1𝑊
(𝑖) = 1.

Sequential importance sampling (sis) generalizes the importance sampling technique for a sequence of
distributions {𝜋𝑡}𝑡≥0 defined on spaces {∏𝑡𝑘=0 𝐸𝑘}𝑡≥0. At time 𝑡 = 0, sample {𝑋(𝑖)0 }

𝑁
𝑖=1 from 𝜂0 and compute

the weights𝑊(𝑖)0 ∝ 𝜋0(𝑋
(𝑖)
0 )/𝜂0(𝑋

(𝑖)
0 ). At time 𝑡 ≥ 1, each sample 𝑋(𝑖)0∶𝑡−1, usually termed particles in the

literature, is extended to 𝑋(𝑖)0∶𝑡 by a proposal distribution 𝑞𝑡(⋅|𝑋
(𝑖)
0∶𝑡−1). And the weights are recalculated by

𝑊(𝑖)𝑡 ∝ 𝜋𝑡(𝑋
(𝑖)
0∶𝑡)/𝜂𝑡(𝑋

(𝑖)
0∶𝑡) where

𝜂𝑡(𝑋
(𝑖)
0∶𝑡) = 𝜂𝑡−1(𝑋

(𝑖)
0∶𝑡−1)𝑞𝑡(𝑋

(𝑖)
0∶𝑡|𝑋
(𝑖)
0∶𝑡−1) (1.5)

and thus

𝑊(𝑖)𝑡 ∝
𝜋𝑡(𝑋
(𝑖)
0∶𝑡)

𝜂𝑡(𝑋
(𝑖)
0∶𝑡)
=

𝜋𝑡(𝑋
(𝑖)
0∶𝑡)𝜋𝑡−1(𝑋

(𝑖)
0∶𝑡−1)

𝜂𝑡−1(𝑋
(𝑖)
0∶𝑡−1)𝑞𝑡(𝑋

(𝑖)
0∶𝑡|𝑋
(𝑖)
0∶𝑡−1)𝜋𝑡−1(𝑋

(𝑖)
0∶𝑡−1)

=
𝜋𝑡(𝑋
(𝑖)
0∶𝑡)

𝑞𝑡(𝑋
(𝑖)
0∶𝑡|𝑋
(𝑖)
0∶𝑡−1)𝜋𝑡−1(𝑋

(𝑖)
0∶𝑡−1)
𝑊(𝑖)𝑡−1 (1.6)

and importance sampling estimate of 𝔼𝜋𝑡[𝜑𝑡(𝑋0∶𝑡)] can be obtained using {𝑊(𝑖)𝑡 , 𝑋
(𝑖)
0∶𝑡}
𝑁
𝑖=1.

However this approach fails as 𝑡 becomes large. The weights tend to become concentrated on a few
particles as the discrepancy between 𝜂𝑡 and 𝜋𝑡 becomes larger. Resampling techniques are applied such that,
a new particle system {�̄�(𝑖)𝑡 , �̄�

(𝑖)
0∶𝑡}
𝑀
𝑖=1 is obtained with the property,

𝔼[
𝑀

∑
𝑖=1
�̄�(𝑖)𝑡 𝜑𝑡(�̄�

(𝑖)
0∶𝑡)] = 𝔼[

𝑁

∑
𝑖=1
𝑊(𝑖)𝑡 𝜑𝑡(𝑋

(𝑖)
0∶𝑡)] (1.7)
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smc samplers

In practice, the resampling algorithm is usually chosen such that𝑀 = 𝑁 and �̄�(𝑖) = 1/𝑁 for 𝑖 = 1,… ,𝑁.
Resampling can be performed at each time 𝑡 or adaptively based on some criteria of the discrepancy. One
popular quantity used to monitor the discrepancy is effective sample size (ess), introduced by Liu and Chen
(1998), defined as

ess𝑡 =
1

∑𝑁𝑖=1(𝑊
(𝑖)
𝑡 )2

(1.8)

where {𝑊(𝑖)𝑡 }
𝑁
𝑖=1 are the normalized weights. And resampling can be performed when ess ≤ 𝛼𝑁 where

𝛼 ∈ [0, 1].
The common practice of resampling is to replicate particles with large weights and discard those with

small weights. In other words, instead of generating a random sample {�̄�(𝑖)0∶𝑡}
𝑁
𝑖=1 directly, a random sample

of integers {𝑅(𝑖)}𝑁𝑖=1 is generated, such that 𝑅(𝑖) ≥ 0 for 𝑖 = 1,… ,𝑁 and ∑𝑁𝑖=1 𝑅
(𝑖) = 𝑁. And each particle

value𝑋(𝑖)0∶𝑡 is replicated for 𝑅(𝑖) times in the new particle system. The distribution of {𝑅(𝑖)}𝑁𝑖=1 shall fulfill the
requirement of Equation (1.7). One such distribution is a multinomial distribution of size𝑁 and weights
(𝑊(𝑖)𝑡 ,… ,𝑊

(𝑁)
𝑡 ). See Douc, Cappé, and Moulines (2005) for some commonly used resampling algorithms.

1.3 smc samplers

smc samplers allow us to obtain, iteratively, collections of weighted samples from a sequence of distributions
{𝜋𝑡}𝑡≥0 over essentially any random variables on some spaces {𝐸𝑡}𝑡≥0, by constructing a sequence of auxiliary
distributions {�̃�𝑡}𝑡≥0 on spaces of increasing dimensions, �̃�𝑡(𝑥0∶𝑡) = 𝜋𝑡(𝑥𝑡)∏𝑡−1𝑠=0 𝐿𝑠(𝑥𝑠+1, 𝑥𝑠), where the
sequence of Markov kernels {𝐿𝑠}𝑡−1𝑠=0, termed backward kernels, is formally arbitrary but critically influences
the estimator variance. See Del Moral, Doucet, and Jasra (2006b) for further details and guidance on the
selection of these kernels.

Standard sequential importance sampling and resampling algorithms can then be applied to the sequence
of synthetic distributions, {�̃�𝑡}𝑡≥0. At time 𝑡 − 1, assume that a set of weighted particles {𝑊(𝑖)𝑡−1, 𝑋

(𝑖)
0∶𝑡−1}
𝑁
𝑖=1

approximating �̃�𝑡−1 is available, then at time 𝑡, the path of each particle is extended with a Markov kernel say,
𝐾𝑡(𝑥𝑡−1, 𝑥𝑡) and the set of particles {𝑋

(𝑖)
0∶𝑡}
𝑁
𝑖=1 reach the distribution 𝜂𝑡(𝑋

(𝑖)
0∶𝑡) = 𝜂0(𝑋

(𝑖)
0 )∏
𝑡
𝑘=1𝐾𝑡(𝑋

(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 ),

where 𝜂0 is the initial distribution of the particles. To correct the discrepancy between 𝜂𝑡 and �̃�𝑡, Equa-
tion (1.6) is applied and in this case,

𝑊(𝑖)𝑡 ∝
�̃�𝑡(𝑋
(𝑖)
0∶𝑡)

𝜂𝑡(𝑋
(𝑖)
0∶𝑡)
=
𝜋𝑡(𝑋
(𝑖)
𝑡 )∏
𝑡−1
𝑠=0 𝐿𝑠(𝑋

(𝑖)
𝑠+1, 𝑋
(𝑖)
𝑠 )

𝜂0(𝑋
(𝑖)
0 )∏
𝑡
𝑘=1𝐾𝑡(𝑋

(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 )
∝ �̃�𝑡(𝑋

(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 )𝑊
(𝑖)
𝑡−1 (1.9)

where �̃�𝑡, termed the incremental weights, are calculated as,

�̃�𝑡(𝑋
(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 ) =
𝜋𝑡(𝑋
(𝑖)
𝑡 )𝐿𝑡−1(𝑋

(𝑖)
𝑡 , 𝑋
(𝑖)
𝑡−1)

𝜋𝑡−1(𝑋
(𝑖)
𝑡−1)𝐾𝑡(𝑋

(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 )

(1.10)
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sequential monte carlo

If 𝜋𝑡 is only known up to a normalizing constant, say 𝜋𝑡(𝑥𝑡) = 𝛾𝑡(𝑥𝑡)/𝑍𝑡, then we can use the unnormalized
incremental weights

𝑤𝑡(𝑋
(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 ) =
𝛾𝑡(𝑋
(𝑖)
𝑡 )𝐿𝑡−1(𝑋

(𝑖)
𝑡 , 𝑋
(𝑖)
𝑡−1)

𝛾𝑡−1(𝑋
(𝑖)
𝑡−1)𝐾𝑡(𝑋

(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 )

(1.11)

for importance sampling. Further, with the previously normalized weights {𝑊(𝑖)𝑡−1}
𝑁
𝑖=1, we can estimate the

ratio of normalizing constant 𝑍𝑡/𝑍𝑡−1 by

�̂�𝑡
𝑍𝑡−1
=
𝑁

∑
𝑖=1
𝑊(𝑖)𝑡−1𝑤𝑡(𝑋

(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 ) (1.12)

Sequentially, the normalizing constant between initial distribution 𝜋0 and some target 𝜋𝑇, 𝑇 ≥ 1 can be
estimated. See Del Moral, Doucet, and Jasra (2006b) for details on calculating the incremental weights. In
practice, when 𝐾𝑡 is invariant to 𝜋𝑡, and an approximated suboptimal backward kernel

𝐿𝑡−1(𝑥𝑡, 𝑥𝑡−1) =
𝜋(𝑥𝑡−1)𝐾𝑡(𝑥𝑡−1, 𝑥𝑡)
𝜋𝑡(𝑥𝑡)

(1.13)

is used, the unnormalized incremental weights will be

𝑤𝑡(𝑋
(𝑖)
𝑡−1, 𝑋
(𝑖)
𝑡 ) =
𝛾𝑡(𝑋
(𝑖)
𝑡−1)

𝛾𝑡−1(𝑋
(𝑖)
𝑡−1)
. (1.14)

1.4 other sequential monte carlo algorithms

Some other commonly used sequential Monte Carlo algorithms can be viewed as special cases of algorithms
introduced above. The annealed importance sampling (ais; Neal (2001)) can be viewed as smc samplers
without resampling. Particle filters as seen in the physics and signal processing literature, can also be
interpreted as the sequential importance sampling and resampling algorithms. See Doucet and Johansen
(2011) for a review of this topic.
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2 BASIC USAGE

2.1 conventions

All classes that are accessible to users are within the name space vsmc. Class names are in CamelCase and
function names and class members are in small_cases. In the remaining of this guide, we will omit the
vsmc:: name space qualifiers. We will use “function” for referring to name space scope functions and
“method” for class member functions.

2.2 getting and installing the library

The library is hosted at GitHub1. This is a header only C++ template library. To install the library just move
the contents of the include directory into a proper place, e.g., /usr/local/include on Unix-alike systems.
This library requires working C++11, blas and lapack implementations. Standard C interface headers for
the later two (cblas.h and lapacke.h) are required. Intel Threading Building Blocks2 (tbb), Intel Math
Kernel Library3 (mkl) and hdf54 are optional third-party libraries. One need to define the configuration
macros VSMC_HAS_TBB, VSMC_HAS_MKL and VSMC_HAS_HDF5 to nonzero values before including any vSMC
headers to make their existence known to the library, respectively.

2.3 concepts

The library is structured around a few core concepts. A sampler is responsible for running an algorithm.
It contains a particle system and operations on it. A particle system is formed by the states {𝑋(𝑖)}𝑁𝑖=1 and
weights {𝑊(𝑖)}𝑁𝑖=1. This system will also be responsible for resampling. All user defined operations are to be
applied to the whole system. These are “initialization” and “moves” which are applied before resampling,
and “mcmc” moves which are applied after resampling. These operations do not have to be mcmc kernels.
They can be used for any purpose that suits the particular algorithm. Most statistical inferences requires
calculation of ∑𝑁𝑖=1𝑊

(𝑖)𝜑(𝑋(𝑖)) for some function 𝜑. This can be carried out along each sampler iteration
by a monitor. Table 2.1 lists these concepts and the corresponding types in the library. Each of them are
introduced in detail in the following sections.

1https://github.com/zhouyan/vSMC
2https://www.threadingbuildingblocks.org
3https://software.intel.com/en-us/intel-mkl
4http://www.hdfgroup.org
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basic usage

Concept Type

State, {𝑋(𝑖)}𝑁𝑖=1 T, user defined
Weight, {𝑊(𝑖)}𝑁𝑖=1 Weight

Particle, {𝑊(𝑖), 𝑋(𝑖)}𝑁𝑖=1 Particle<T>

Single particle, {𝑊(𝑖), 𝑋(𝑖)} SingleParticle<T>

Sampler Sampler<T>

Initialization Sampler<T>::init_type, user defined
Move Sampler<T>::move_type, user defined
mcmc Sampler<T>::mcmc_type, user defined
Monitor Monitor<T>

Table 2.1 Core concepts of the library

2.3.1 State

The library gives users the maximum flexibility of how the states {𝑋(𝑖)}𝑁𝑖=1 shall be stored and structured.
Any class type with a constructor that takes a single integer value, the number of particles, as its argument,
and a method named copy is acceptable. For example,

1 class T

2 {

3 public:

4 T(std::size_t N);

5 template <typename IntType>

6 void copy(std::size_t N, IntType *index)

7 {

8 for (std::size_t i = 0; i != N; ++i) {

9 // Let 𝑎𝑖 = index[i], set 𝑋(𝑖) = 𝑋(𝑎𝑖)

10 }

11 }

12 };

How the state values are actually stored and accessed are entirely up to the user. The method copy is
necessary since the library assumes no knowledge of the internal structure of the state. And thus it cannot
perform the last step of a resampling algorithm, which makes copies of particles with larger weights and
eliminate those with smaller weights.
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concepts

For most applications, the values can be stored within an𝑁 by 𝑑matrix, where 𝑑 is the dimension of
the state. The library provides a convenient class template for this situation,

1 template <MatrixLayout Layout, std::size_t Dim, typename T>

2 class StateMatrix;

where Layout is either RowMajor or ColMajor, which specifies the matrix storage layout; Dim is a non-
negative integer value. If Dim is zero, then the dimension may be changed at runtime. If it is positive, then
the dimension is fixed and cannot be changed at runtime. The last template parameter T is the C++ type of
state space. The following constructs an object of this class,

1 StateMatrix<ColMajor, Dynamic, double> s(N);

where Dynamic is just an enumerator with value zero. We can specify the dimension at runtime through
the method s.resize_dim(d). Note that, if the template parameter Dim is positive, then this call results in
a compile-time error.

To access 𝑋𝑖𝑗, the value of the state of the 𝑖th particle at the 𝑗th coordinate, one can use the method
s.state(i,j). The method s.data() returns a pointer to the beginning of the matrix. If Layout is
RowMajor, then the method s.row_data(i) returns a pointer to the beginning of the 𝑖th row. If Layout is
ColMajor, then the method s.col_data(j) returns a pointer to the beginning of the 𝑗th column. These
methods help interfacing with numerical libraries, such as blas.

The StateMatrix class deliberately does not provide a resize method. There are algorithms that
change the sample size between iterations. However, such algorithms often change size through resampling
or other methods, either deterministically or stochastically. An example of changing size of a sampler is
provided in section 6.1.

2.3.2 Weight

The vector of weights {𝑊(𝑖)}𝑁𝑖=1 is abstracted in the library by the Weight class. The following constructs an
object of this class,

1 Weight w(N);

There are a few methods for accessing the weights,

1 w.ess(); // Get ess
2 w.set_equal(); // Set 𝑊(𝑖) = 1/𝑁

The weights can be manipulated, given a vector of length𝑁, say 𝑣,

1 w.set(v); // Set 𝑊(𝑖) ∝ 𝑣(𝑖)

2 w.mul(v); // Set 𝑊(𝑖) ∝𝑊(𝑖)𝑣(𝑖)

3 w.set_log(v); // Set log𝑊(𝑖) = 𝑣(𝑖) + const.
4 w.add_log(v); // Set log𝑊(𝑖) = log𝑊(𝑖) + 𝑣(𝑖) + const.
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basic usage

The method w.data() returns a pointer to the normalized weights. It is important to note that the weights
are always normalized and all mutable methods only allow access to {𝑊(𝑖)}𝑁𝑖=1 as a whole.

2.3.3 Particle

A particle system is composed of both the state values, which is of user defined type, say T, and the weights.
The following constructs an object of class Particle<T>,

1 Particle<T> particle(N);

Themethod particle.value() returns the type T object, and particle.weight() returns the type Weight
object5. They are constructed with the same integer value𝑁 when the above constructor is invoked.

As a Monte Carlo algorithm, random number generators (rng) will be used frequently. The user is free
to use whatever rng mechanism as they see fit. However, one common issue encountered in practice is
how to maintain independence of the rng streams between function calls. For example, consider below a
function that manipulates some state values,

1 void function(double &x)

2 {

3 std::mt19937 rng;

4 std::normal_distribution<double> rnorm(0, 1);

5 x = rnorm(rng);

6 }

Every call of this function will give x exactly the same value. This is hardly what the user intended. One
might consider an global rng or one as class member data. For example,

1 std::mt19937 rng;

2 void function(double &x)

3 {

4 std::normal_distribution<double> rnorm(0, 1);

5 x = rnorm(rng);

6 }

This will work fine as long as the function is never called by two threads at the same time. However, smc
algorithms are natural candidates to parallelization. Therefore, the user will need to either lock the rng,
which degenerates the performance, or construct different rngs for different threads. The later, though
ensures thread-safety, has other issues. For example, consider

5More precisely, it is a Particle<T>::weight_type object, whose exact type depends on the type T. See section 3.2 for more
details. If the user does not do something special as shown in that section, then the default type is the class Weight
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1 std::mt19937 rng1(s1); // For thread 𝑖1 with seed 𝑠1
2 std::mt19937 rng2(s2); // For thread 𝑖2 with seed 𝑠2

where the seeds 𝑠1 ≠ 𝑠2. It is difficult to ensure that the two streams generated by the two rngs are
independent. Common practice for parallel rng is to use sub-streams or leap-frog algorithms. Without
going into any further details, it is sufficient to say that this is perhaps not a problem that most users bother
to solve.

The library provides a simple solution to this issue. The method particle.rng(i) returns a reference
to an rng that conforms to the C++11 uniform rng concept. It can be called from different threads at the
same time, for example,

1 auto &rng1 = particle.rng(i1); // Called from thread 𝑖1
2 auto &rng2 = particle.rng(i2); // Called from thread 𝑖2

If 𝑖1 ≠ 𝑖2, then the subsequent use of the two rngs are guaranteed to be thread-safe. In addition, they will
produce independent streams. If tbb is available to the library, then it is also thread-safe even if 𝑖1 = 𝑖2. One
can write functions that process each particle, for example,

1 void function(std::size_t i)

2 {

3 auto &rng = particle.rng(i);

4 // Process the particle i using rng

5 }

And if later this function is called from a parallelized environment, it is still thread-safe and produce desired
statistical results. The details of the rng system are documented later in chapter 7.

2.3.4 Single particle

It is often easier to define a function 𝑓(𝑋(𝑖)) than 𝑓(𝑋(1),… ,𝑋(𝑁)). However, Particle<T> only provides
access to {𝑋(𝑖)}𝑁𝑖=1 as a whole through particle.value(). To allow direct access to 𝑋(𝑖), the library uses
a class template SingeParticle<T>. An object of this class is constructed from the index 𝑖 of the particle,
and a pointer to the particle system it belongs to,

1 SingleParticle<T> sp(i, &particle);

or more conveniently,

1 auto sp = particle.sp(i);

In its most basic form, it has the following methods,
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1 sp.id(); // Get the value i that sp was constructed with

2 sp.particle(); // Get a reference to the Particle<T> object sp belongs to

3 sp.rng(); // => sp.particle().rng(sp.id());

If T is a subclass of StateMatrix, then it has two additional methods,

1 sp.dim(); // => sp.particle().value().dim();

2 sp.state(j); // => sp.particle().value().state(sp.id(), j);

It is clear now that the interface of SingleParticle<T> depends on the type T. Later in section 3.3 we will
show how to insert additional methods into this class.

A SingleParticle<T> object is similar to an iterator. In fact, it supports almost all of the operations
of a random access iterator with two exceptions. First dereferencing a SingleParticle<T> object returns
itself. The support of operator* allows the range-based for loop to be applied on a Particle<T> object,
for example,

1 for (auto sp : particle) {

2 // sp is of type SingleParticle<T>

3 }

The above loop does make some sense. However trying to dereferencing a SingleParticle<T> object in
other contexts does not make much sense. Recall that it is an index, not a pointer. The library does not
require the user defined type T to provide access to individual values, and thus it cannot dereference a
SingleParticle<T> object to obtain such a value. Similarly, the expression sp[n] returns sp + n, another
SingleParticle<T> object. For the same reason, operator-> is not supported at all.

2.3.5 Sampler

A sampler can be constructed in a few ways,

1 Sampler<T> sampler(N);

constructs a sampler that is never resampled, while

1 Sampler<T> sampler(N, Multinomial);

constructs a sampler that is resampled every iteration, using the multinomial algorithm. Other resampling
schemes are also implemented, see chapter 6. Last, one can also construct a sampler that is only resampled
when ess < 𝛼𝑁, where 𝛼 ∈ [0, 1], by the following,

1 Sampler<T> sampler(N, Multinomial, alpha);
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If 𝛼 > 1, then it has the same effect as the first constructor, since ess ≤ 𝑁. If 𝛼 < 0, then it has the same
effect as the second constructor, since ess > 0.

In summary, if one does not tell the constructor which resampling scheme to use, then it is assumed
one does not want to do resampling. If one specify the resampling scheme without a threshold for ess, then
it is assumed it need to be done at every step.

The method sampler.particle() returns a reference to the particle system. A sampler can be initial-
ized by user defined object that is convertible to the following type,

1 using init_type = std::function<std::size_t(Particle<T> &, void *)>;

For example,

1 auto init = [](Particle<T> &particle, void *param) {

2 // Process initialization parameter

3 // Initialize the particle system

4 };

is a C++11 lambda expression that can be used for this purpose. One can add it to a sampler by calling
sampler.init(init). Upon calling sampler.initialize(param), the user defined function init will
be called and the argument param will be passed to it.

Similarly, after initialization, at each iteration, the particle system can be manipulated by user defined
callable objects that is convertible to the following types,

1 using move_type = std::function<std::size_t(std::size_t, Particle<T> &)>;

2 using mcmc_type = std::function<std::size_t(std::size_t, Particle<T> &)>;

Multiple moves can be added to a sampler. The call sampler.move(move, append) adds a move_type
object to the sampler, where append is a boolean value. If it is false, it will clear any moves that were added
before. If it is true, then move is appended to the end of an existing sequence of moves. Each move will be
called one by one upon calling sampler.iterate(). A similar sequence of mcmc moves can also be added
to a sampler. The call sampler.iterate() will call user defined moves first, then perform the possible
resampling, and then the sequence of mcmc moves.

Note that the possible resampling will also be performed after the user defined initialization function is
called by sampler.initialize(param). And after that, the sequence of mcmc moves will be called. If it
desired not to perform mutations during initialization, then following can be used,

1 sampler.init(init).initialize(param);

2 sampler.move(move, false).mcmc(mcmc, false).iterate(n);

The above code also demonstrates that most methods of Sampler<T> return a reference to the sampler
itself and thus method calls can be chained. In addition, method sampler.iterate(n) accepts an optional
argument that specifies the number of iterations. It is a shortcut for
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1 for (std::size_t i = 0; i != n; ++i)

2 sampler.iterate();

2.3.6 Monitor

Inferences using a smc algorithm usually require the calculation of the quantity ∑𝑁𝑖=1𝑊
(𝑖)𝜑(𝑋(𝑖)) at each

iteration for some function 𝜑. One can define callable object that is convertible to the following type,

1 using eval_type =

2 std::function<void(std::size_t, std::size_t, Particle<T> &, double *);

For example,

1 void eval(std::size_t iter, std::size_t d, Particle<T> &particle, double *r)

2 {

3 for (std::size_t i = 0; i != particle.size(); ++i, r += dim) {

4 auto sp = particle.sp(i);

5 r[0] = /* 𝜑1(𝑋(𝑖)) */;
6 // ...

7 r[d - 1] = /* 𝜑𝑑(𝑋(𝑖)) */;
8 }

9 }

The argument d is the dimension of the vector function 𝜑. The output is an𝑁 by 𝑑matrix in row major
layout, with each row corresponding to the value of 𝜑(𝑋(𝑖)). Then one can add this function to a sampler by
calling,

1 sampler.monitor("name", d, eval);

where the first argument is the name for the monitor, the second its dimension, and the third the evaluation
function. At each iteration, after all the initialization, possible resampling, moves and mcmcmoves are done,
the sampler will calculate ∑𝑁𝑖=1𝑊

(𝑖)𝜑(𝑋(𝑖)). This method has two optional arguments. First is a boolean
value record_only. If it is true, it is assumed that no summation is needed. For example,

1 void eval(std::size_t iter, std::size_t d, Particle<T> &particle, double *r)

2 {

3 r[0] = /* 𝜑1({𝑋(𝑖)}𝑁𝑖=1) */;
4 // ...

5 r[d - 1] = /* 𝜑𝑑({𝑋(𝑖)}𝑁𝑖=1) */;
6 }
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In this case, the monitor acts merely as a storage facility. The second optional argument is stage which
specifies at which point the monitoring shall happen. It can be MonitorMove, which specifies that the
monitoring happens right after the moves and before resampling. It can also be MonitorResample, which
specifies that the monitoring happens right after the resampling and before the mcmc moves. Last, the
default is MonitorMCMC, which specifies that the monitoring happens after everything.

The output of a sampler, together with the records of any monitors it has can be output in plain text
forms through a C++ output stream. For example,

1 std::cout << sampler;

We will see how this works later with a concrete particle filter example. If the hdf5 library is available, it is
also possible to write such output to hdf5 format, for example,

1 hdf5store(sampler, file_name, data_name);

Details can be found in section 8.3.

2.4 a simple particle filter

2.4.1 Model and algorithm

This is an example used in Johansen (2009). Through this example, we will show how to re-implement a
simple particle filter in vSMC. It shall walk one through the basic features of the library introduced above.

The state space model, known as the almost constant velocity model in the tracking literature, provides
a simple scenario. The state vector𝑋𝑡 contains the position and velocity of an object moving in a plane. That
is,𝑋𝑡 = (𝑋𝑡pos, 𝑌𝑡pos, 𝑋𝑡vel, 𝑌

𝑡
vel)
𝑇. Imperfect observations 𝑌𝑡 = (𝑋𝑡obs, 𝑌

𝑡
obs)
𝑇 of the positions are possible at

each time instance. The state and observation equations are linear with additive noises,

𝑋𝑡 = 𝐴𝑋𝑡−1 + 𝑉𝑡
𝑌𝑡 = 𝐵𝑋𝑡 + 𝛼𝑊𝑡

where

𝐴 =(

1 𝛥 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) 𝐵 = (
1 0 0 0
0 1 0 0

) 𝛼 = 0.1

and we assume that the elements of the noise vector 𝑉𝑡 are independent Gaussian with variance 0.02 and
0.001 for position and velocity, respectively. The observation noise,𝑊𝑡 comprises independent, identically
distributed 𝑡-distributed random variables with degree of freedom 𝜈 = 10. The prior at time 0 corresponds
to an axis-aligned Gaussian with variance 4 for the position coordinates and 1 for the velocity coordinates.
The particle filter algorithm is shown in algorithm 2.1.
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Initialization
Set 𝑡 ← 0.
Sample𝑋(0,𝑖)pos , 𝑌

(0,𝑖)
pos ∼u� (0, 4) and𝑋(0,𝑖)vel , 𝑌

(0,𝑖)
vel ∼u� (0, 1).

Weight𝑊(𝑖)0 ∝ exp ℓ(𝑋
(𝑖)
0 |𝑌0) where ℓ is the likelihood function.

Iteration
Set 𝑡 ← 𝑡 + 1.
Sample

𝑋(𝑡,𝑖)pos ∼u� (𝑋(𝑡−1,𝑖)pos + 𝛥𝑋
(𝑡−1,𝑖)
vel , 0.02) 𝑋(𝑡,𝑖)vel ∼u� (𝑋(𝑡−1,𝑖)vel , 0.001)

𝑌(𝑡,𝑖)pos ∼u� (𝑌(𝑡−1,𝑖)pos + 𝛥𝑌
(𝑡−1,𝑖)
vel , 0.02) 𝑌(𝑡,𝑖)vel ∼u� (𝑌(𝑡−1,𝑖)vel , 0.001)

Weight𝑊(𝑖)𝑡 ∝𝑊
(𝑖)
𝑡−1 exp ℓ(𝑋

(𝑖)
𝑡 |𝑌𝑡).

Repeat the Iteration step until all data are processed.

Algorithm 2.1 Particle filter algorithm for the almost constant velocity model.

2.4.2 Implementations

The complete program is shown in appendix a.1. In this section we show the outline of the implementation.

The main program

1 Sampler<PFState> sampler(N, Multinomial, 0.5);

2 sampler.init(PFInit()).move(PFMove(), false).monitor("pos", 2, PFMEval());

3 sampler.initialize(const_cast<char *>("pf.data")).iterate(n - 1);

4 std::ofstream output("pf.out");

5 output << sampler;

6 output.close();

Sampler<PFState> object is constructed first. Then the initialization PFInit, move PFMove and a monitor
PFMEval that records 𝑋𝑡pos and 𝑌𝑡pos are added to the sampler. The monitor is named "pos". Then it is
initialized with the name of the data file "pf.data", and iterated 𝑛 − 1 times, where 𝑛 is the number of data
points. At last, the output is written into a text file "pf.out". Below is a short R6 script that can be used to
process the output

6http://r-project.org
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1 library(ggplot2)

2 pf <- read.table("pf.out", header = TRUE)

3 sink("pf.rout")

4 print(pf[1:5,])

5 sink()

6 obs <- read.table("pf.data", header = FALSE)

7 dat <- data.frame(

8 X = c(pf[["pos.0"]], obs[,1]),

9 Y = c(pf[["pos.1"]], obs[,2]))

10 dat[["Source"]] <- rep(c("Estimate", "Observation"), each = dim(obs)[1])

11 plt <- qplot(x = X, y = Y, data = dat, geom = "path")

12 plt <- plt + aes(group = Source, color = Source, linetype = Source)

13 plt <- plt + theme_bw() + theme(legend.position = "top")

14 pdf("pf.pdf")

15 print(plt)

16 dev.off()

The print statement shows the first five lines of the output,

1 Size Resampled Accept.0 ESS pos.0 pos.1

2 1 1000 1 0 2.9204 -1.21951 3.16397

3 2 1000 1 0 313.6830 -1.15602 3.22770

4 3 1000 1 0 33.0421 -1.26451 3.04031

5 4 1000 1 0 80.1088 -1.45922 3.37625

6 5 1000 1 0 382.8820 -1.47299 3.49230

The column Size shows the sample size at each iteration. The library does not provide direct support of
changing the sample size. However, it is possible and an example is shown in section 6.1. The column
Resampled shows nonzero values if resampling were performed and zero otherwise. For each moves and
mcmc steps, an acceptance count will be recorded. In this particular example, it is irrelevant. Next the
column ESS shows the value of ess. The last two columns show the importance sampling estimates of the
positions recorded by the monitor named "pos". The graphical representation of the output is shown in
figure 2.1.

Before diving into the details of the implementation of PFState, etc., we will first define a few constant
and types. The state space is of dimension 4. And it is natural to use a StateMatrix as the base class of
PFState,

1 using PFStateBase = StateMatrix<RowMajor, 4, double>;
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Figure 2.1 A simple particle filter
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The numbers of particles and data points are also defined as constants in this simple example,

1 static constexpr std::size_t N = 1000; // Number of particles

2 static constexpr std::size_t n = 100; // Number of data points

Last, we define the following constants as the indices of each state component.

1 static constexpr std::size_t PosX = 0;

2 static constexpr std::size_t PosY = 1;

3 static constexpr std::size_t VelX = 2;

4 static constexpr std::size_t VelY = 3;

State: PFState

As noted earlier, StateMatrix will be used as the base class of PFState. Since the data will be shared by all
particles, we also store the data within this class. And methods will be provided to read the data from an
external file, and compute the log-likelihood ℓ(𝑋(𝑖)), which accesses the data. Below the declaration of the
class PFState is shown,

1 class PFState : public PFStateBase

2 {

3 public:

4 using PFStateBase::PFStateBase;

5 // Return ℓ(𝑋(𝑖)𝑡 |𝑌𝑡)
6 double log_likelihood(std::size_t t, size_type i) const;

7 // Read data from an external file

8 void read_data(const char *param);

9 private:

10 Vector<double> obs_x_;

11 Vector<double> obs_y_;

12 };

Initialization: PFInit

The initialization step is implemented as below,

1 class PFInit

2 {
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3 public:

4 std::size_t operator()(Particle<PFState> &particle, void *param)

5 {

6 eval_param(particle, param);

7 eval_pre(particle);

8 std::size_t acc = 0;

9 for (auto sp : particle)

10 acc += eval_sp(sp);

11 eval_post(particle);

12 return acc;

13 }

14 void eval_param(Particle<PFState> &particle, void *param)

15 {

16 particle.value().read_data(static_cast<const char *>(param));

17 }

18 void eval_pre(Particle<PFState> &particle)

19 {

20 w_.resize(particle.size());

21 }

22 std::size_t eval_sp(SingleParticle<PFState> sp)

23 {

24 NormalDistribution<double> norm_pos(0, 2);

25 NormalDistribution<double> norm_vel(0, 1);

26 sp.state(PosX) = norm_pos(sp.rng());

27 sp.state(PosY) = norm_pos(sp.rng());

28 sp.state(VelX) = norm_vel(sp.rng());

29 sp.state(VelY) = norm_vel(sp.rng());

30 w_[sp.id()] = sp.particle().value().log_likelihood(0, sp.id());

31 return 0;

32 }

33 void eval_post(Particle<PFState> &particle)

34 {
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35 particle.weight().set_log(w_.data());

36 }

37 private:

38 Vector<double> w_;

39 };

An object of this class is convertible to Sampler<PFState>::init_type. In the main method, operator(),
eval_param is called first to initialize the data. Then eval_pre is called to allocated any resource this class
need before calling any eval_sp. In this case, it allocate the vector w_ for storing weights computed later.
Next, the main loop initializes each state component with the respective Gaussian distribution, computes
the log-likelihood and store them in the vector allocated in the last step. This is done by calling the eval_sp
method. After all particles have been initialized, we set the weights of the system in eval_post. Later in
section 2.5 it will become clear why we structured the implementation this way.

Move: PFMove

Themove step is similar to the initialization. We show the declaration here,

1 class PFMove

2 {

3 public:

4 std::size_t operator()(std::size_t t, Particle<PFState> &particle);

5 void eval_pre(std::size_t t, Particle<PFState> &particle);

6 std::size_t eval_sp(std::size_t t, SingleParticle<PFState> sp);

7 void eval_post(std::size_t t, Particle<PFState> &particle);

8 private:

9 Vector<double> w_;

10 };

Monitor: PFMEval

Last we define PFMEval, which simply copies the values of the positions.

1 class PFMEval

2 {

3 public:

4 void operator()(std::size_t t, std::size_t dim,
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5 Particle<PFState> &particle, double *r)

6 {

7 eval_pre(t, particle);

8 for (std::size_t i = 0; i != particle.size(); ++i, r += dim)

9 eval_sp(t, dim, particle.sp(i), r);

10 eval_post(t, particle);

11 }

12 void eval_pre(std::size_t t, Particle<PFState> &particle) {}

13 void eval_sp(std::size_t t, std::size_t dim,

14 SingleParticle<PFState> sp, double *r)

15 {

16 r[0] = sp.state(PosX);

17 r[1] = sp.state(PosY);

18 }

19 void eval_post(std::size_t t, Particle<PFState> &particle) {}

20 };

2.5 symmetric multiprocessing

The above example is implemented in a sequential fashion. However, the loops inside PFInit, PFMove and
PFMEval clearly can be parallelized. The library provides basic support of multicore parallelization through
its smp module. Two widely used backends, OpenMP and tbb are available. Here we demonstrate how to
use the tbb backend. First we will declare the implementation classes as subclasses as below,

1 class PFInit : public InitializationTBB<PFState>;

2 class PFMove : public MoveTBB<PFState>;

3 class PFMEval : public MonitorEvalTBB<PFState>;

And remove operator() from their implementations. After these changes, the implementation will be
parallelized using tbb. The complete program can be found in sectionThe complete program is shown in
appendix a.2.

It works as if InitializationTBB<PFState> has an implementation of operator() as we did before,
except it is parallelized. Now it is clear that, method such as eval_pre and eval_post are called before
and after the main loop. Method eval_sp is called within the loop and it need to be thread-safe if called
with different arguments. This is the main reason we constructed the NormalDistribution objects within
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eval_sp instead of as member data, even though they are constructed in exactly the same way for each
particle. This is because NormalDistribution::operator() is a mutable method and thus not thread-safe.
If any of these member functions does not do anything, then it does not have to be defined in the derived
class.

Apart from the three base classes we have shown here, there are also InitializationOMP, etc., for
using the OpenMP backend. And InitializationSEQ, etc., for implementation without parallelization.
The later works in exactly the same way as our implementation in the last section. It is often easier to
debug a single-threaded program than a parallelized one. And thus one may develop the algorithm with the
sequential backend and obtain optimal performance latter by only changing the name of a few base class
names. This can usually be done automatically through a build system.

2.5.1 Performance consideration

The base classes dispatch calls to eval_pre, eval_sp, etc., through the virtual function mechanism. The
performance impact is minimal for eval_pre and eval_post, since they are called only once in each
iteration and we expect the computational cost will be dominated by eval_sp in most cases. However, the
dynamic dispatch can cause considerable performance degenerating if the cost of a single call to eval_sp

is small while the number of particles is large. Modern optimizing compilers can usually devirtualize the
method calls in trivial situations. However, it is not always possible. In this situation, the library will need a
little help from the user to make compile-time dispatch. For each implementation class, we will declare it in
the following way,

1 class PFInit : public InitializationTBB<PFState, PFInit>;

2 class PFMove : public MoveTBB<PFState, PFMove>;

3 class PFMEval : public MonitorEvalTBB<PFState, PFMEval>;

The second template argument of the base class need to be exactly the same as the derived class. For
interested users, this is called Curiously Recurring Template Pattern7 (crtp). This usage of the library’s base
classes also provides other flexibility. The methods eval_pre etc., can be either const or mutable. They can
also be static.

7https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
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3 ADVANCED USAGE

3.1 cloning objects

The Sampler<T> and Particle<T> objects have copy constructors, assignment operators, move construc-
tors, and move assignment operators that behaves exactly the way as C++ programmers would expect.
However, these behaviors are not always desired. For example, in Beskos et al. (2014) a stable particle filter in
high-dimensions was developed. Without going into the details, the algorithm consists of a particle system
where each particle is itself a particle filter. And thus when resampling the global system, the Sampler<T> ob-
ject will be copied, together with all of its sub-objects. This include the rng system within the Particle<T>
object. Even if the user does not use this rng system for random number generating within user defined
operations, one of these rng will be used for resampling by the Particle<T> object. Direct copying the
Sampler<T> object will lead to multiple local filters start to generating exactly the same random numbers
in the next iteration. This is an undesired side effects. In this situation, one can clone the sampler with the
following method,

1 auto new_sampler = sampler.clone(new_rng);

where new_rng is a boolean value. If it is true, then an exact copy of sampler will be returned, except it
will have the rng system re-seeded. If it is false, then the above assignemnt behaves exactly the same as

1 auto new_sampler = sampler;

Alternatively, the contents of an existing Sampler<T> object can be replaced from another one by the
following method,

1 sampler.clone(other_sampler, retain_rng);

where retain_rng is a boolean value. If it is true, then the rng system of other_sampler is not copied
and its own rng system is retained. If it is false, then the above call behaves exactly the same as

1 sampler = other_sampler;

The above method also supports move semantics. Similar clonemethods exist for the Particle<T> class.

3.2 customizing member types

The Particle<T> class has a few member types that can be replaced by the user. If the class T has the
corresponding types, then the member type of Particle<T> will be replaced. For example, given the
following declarations inside class T,
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1 class T

2 {

3 public:

4 using size_type = int;

5 using weight_type = /* User defined type */;

6 using rng_set_type = RNGSetTBB<AES256_4x32>;

7 };

The corresponding Particle<T>::size_type, etc., will have their defaults replaced with the above types.
A note on weight_type, it needs to provide the following method,

1 w.ess(); // Get ess
2 w.set_equal(); // Set 𝑊(𝑖) = 1/𝑁
3 w.resample_size(); // Get the size 𝑁.
4 w.resample_data(); // Get a pointer to normalized weights

For the library’s default class Weight, the last two calls are the same as w.size() and w.data(). However,
this does not need to be so. For example, below is the outline of an implementation of weight_type for
distributed systems, assuming each computing node has been allocated𝑁𝑟 particles.

1 class WeightMPI

2 {

3 public:

4 double ess()

5 {

6 double local = /* ∑𝑁𝑟𝑖=1(𝑊
(𝑖))2 */;

7 double global = /* Gather local from each all nodes */;

8 // Broadcast the value of global

9 return 1 / global;

10 }

11 std::size_t resample_size() { return /* ∑𝑁𝑟 */; }

12 double *resample_data()

13 {

14 if (rank == 0) {

15 // Gather all normalized weights into a member data on this node

16 // Say resample_weight_

17 return resample_weight_.data();
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18 } else {

19 return nullptr;

20 }

21 }

22 void set_equal()

23 {

24 // Set all weights to 1/∑𝑁𝑟
25 // Synchronization

26 }

27 void set(const double *v)

28 {

29 // Set 𝑊(𝑖) = 𝑣𝑖 for 𝑖 = 1,… ,𝑁𝑟
30 // Compute 𝑆𝑟 = ∑

𝑁𝑟
𝑖=1𝑊
(𝑖)

31 // Gathering 𝑆𝑟, compute 𝑆 = ∑𝑆𝑟
32 // Broadcast 𝑆
33 // Set 𝑊(𝑖) = 𝑊(𝑖)/𝑆 for 𝑖 = 1,… ,𝑁𝑟
34 }

35 };

When Particle<T> performs resampling, it checks if the pointer returned by w.resample_data() is a null
pointer. It will only generate the vector {𝑎𝑖}𝑁𝑖=1 (see section 2.3.1) when it is not a null pointer. And then a
pointer to this vector is passed to T::copy. Of course, the class T also needs to provide a suitable method
copy that can handle the distributed system. By defining suitable WeightMPI and T::copy, the library can
be extended to handle distributed systems.

3.3 extending SingleParticle<T>

The SingleParticle<T> can also be extended by the user. We have already see in section 2.3.1 that if class
T is a subclass of StateMatrix, SingleParticle<T> can have additional methods to access the state. This
class can be extended by defining a member class template inside class T. For example, for the simple particle
filter in section 2.4, we can redefine the PFState as the following,

1 using PFStateBase = StateMatrix<RowMajor, 4, double>;

2 template <typename T>

3 using PFStateSPBase = PFStateBase::single_particle_type<T>;

29



advanced usage

4 class PFState : public PFStateBase

5 {

6 public:

7 using PFStateBase::StateMatrix;

8 template <typename S>

9 class single_particle_type : public PFStateSPBase<S>

10 {

11 public:

12 using PFStateSPBase<S>::single_particle_type;

13 double &pos_x() { return this->state(0); }

14 double &pos_y() { return this->state(1); }

15 double &vel_x() { return this->state(2); }

16 double &vel_y() { return this->state(3); }

17 // Return $\ell(X_t^{(i)}|Y_t)$

18 double log_likelihood(std::size_t t);

19 };

20 void read_data(const char *param);

21 private:

22 Vector<double> obs_x_;

23 Vector<double> obs_y_;

24 };

And later, we can use these methods when implement PFInit etc.,

1 class PFInit : public InitializeTBB<PFState, PFInit>

2 {

3 public:

4 void eval_param(Particle<PFState> &particle, void *param);

5 void eval_pre(Particle<PFState> &particle);

6 std::size_t eval_sp(SingleParticle<PFState> sp)

7 {

8 NormalDistribution<double> norm_pos(0, 2);
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9 NormalDistribution<double> norm_vel(0, 1);

10 sp.pos_x() = norm_pos(sp.rng());

11 sp.pos_y() = norm_pos(sp.rng());

12 sp.vel_x() = norm_vel(sp.rng());

13 sp.vel_y() = norm_vel(sp.rng());

14 w_[sp.id()] = sp.log_likelihood(0);

15 return 0;

16 }

17 void eval_post(Particle<PFState> &particle);

18 private:

19 Vector<double> w_;

20 };

It shall be noted that, it is important to keep single_particle_type small and copying the object efficient.
The library will frequently pass argument of SingleParticle<T> type by value.

3.3.1 Compared to custom state type

One can also write a custom state type. For example,

1 class PFStateSP

2 {

3 public:

4 double &pos_x() { return pos_x_; }

5 double &pos_y() { return pos_y_; }

6 double &vel_x() { return vel_x_; }

7 double &vel_y() { return vel_y_; }

8 double log_likelihood(double obs_x, double obs_y) const;

9 private:

10 double pos_x_;

11 double pos_y_;

12 double vel_x_;

13 double vel_y_;

14 };
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And the PFState class will be defined as,

1 using PFStateBase = StateMatrix<RowMajor, 1, PFStateSP>;

2 class PFState : public PFStateBase

3 {

4 public:

5 using PFStateBase::StateMatrix;

6 double log_likelihood(std::size_t t, std::size_t i) const

7 {

8 return this->state(i, 0).log_likelihood(obs_x_[t], obs_y_[t]);

9 }

10 void read_data(const char *param);

11 private:

12 Vector<double> obs_x_;

13 Vector<double> obs_y_;

14 };

The implementation of PFInit, etc., will be similar. Compared to extending the SingleParticle<T> type,
this method is perhaps more intuitive. Functionality-wise, they are almost identical. However, there are a
few advantages of extending SingleParticle<T>. First, it allows more compact data storage. Consider a
situation where the state space is best represented by a real and an integer. The most intuitive way might be
the following,

1 class S

2 {

3 public:

4 double &x() { return x_; }

5 double &u() { return u_; }

6 private:

7 double x_;

8 int u_;

9 };

10 class T : StateMatrix<RowMajor, 1, S>;
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However, the type S will need to satisfy the alignment requirement of double, which is 8-bytes on most
platforms. However, its size might not be a multiple of 8-bytes. Therefore the type will be padded and the
storage of a vector of such type will not be as compact as possible. This can affect performance in some
situations. An alternative approach would be the following,

1 class T

2 {

3 public:

4 template <typename S>

5 class single_particle_type : SingleParticleBase<S>

6 {

7 public:

8 using SingleParticleBase<S>::SingleParticleBase;

9 double &x() { return this->particle().x_[this->id()]; }

10 double &u() { return this->particle().u_[this->id()]; }

11 };

12 private:

13 Vector<double> x_;

14 Vector<int> u_;

15 };

By extending SingleParticle<T>, it provides the same easy access to each particle. However, now the
state values are stored as two compact vectors.

A second advantage is that it allows easier access to the raw data. Consider the implementation PFMEval
in section 2.4.2. It is rather redundant to copy each value of the two positions, just so later we can compute
weighted sums from them. Recall that in section 2.3.6 we showed that a monitor that compute the final
results directly can also be added to a sampler. Therefore, we might implement PFMEval as the following,

1 class PFMEval

2 {

3 public:

4 void operator()(std::size_t t, std::size_t dim,

5 Particle<PFState> &particle, double *r)

6 {

7 cblas_dgemv(CblasRowMajor, CblasTrans, particle.size(), dim, 1,

8 particle.value().data(), particle.value().dim(),

9 particle.weight().data(), 1, 0, r, 1);
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10 }

11 };

And it can be added to a sampler as,

1 sampler.monitor("pos", 2, PFMEval(), true);

For this particular case, the performance benefit is small. But the possibility of accessing compact vector as
raw data allows easier interfacing with external numerical libraries. If we implemented PFState with the
alternative approach shown earlier, the above direct invoking of cblas_dgemv will not be possible.
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4 CONFIGURATION MACROS

The library has a few configuration macros. All these macros can be overwritten by the user by defining
them with proper values before including any of the library’s headers. Most of the macros have the prefix
VSMC_HAS_, which specify if a feature is available to the library. A few have the prefix VSMC_USE_, which
specify if a feature shall be used in the case that it is available. A handful remaining ones define some
constants or types used by the library. These macros are listed in table 4.1.

Macro Default Description

VSMC_INT64 Platform dependent The 64-bits integer type used by x86 intrinsics
functions

VSMC_HAS_INT128 Platform dependent Support for 128-bits integers
VSMC_INT128 Platform dependent The 128-bits integer type
VSMC_HAS_SSE2 Platform dependent Support for sse2 intrinsic functions
VSMC_HAS_AVX2 Platform dependent Support for avx2 intrinsic functions
VSMC_HAS_AES_NI Platform dependent Support for aes-ni intrinsic functions
VSMC_HAS_RDRAND Platform dependent Support for rdrand intrinsic functions
VSMC_HAS_X86 Platform dependent If we are using x86
VSMC_HAS_X86_64 Platform dependent If we are using x86-64
VSMC_HAS_POSIX Platform dependent If we are on a posix platform
VSMC_HAS_OMP Platform dependent Support for OpenMP 3.0 or higher
VSMC_HAS_TBB 0 Support for tbb 4.0 or higher
VSMC_HAS_TBB_MALLOC VSMC_HAS_TBB Support for tbb scalable memory allocation
VSMC_HAS_HDF5 0 Support for hdf5 1.8.6 or higher
VSMC_HAS_MKL 0 Support for mkl 11 or higher
VSMC_USE_MKL_CBLAS VSMC_HAS_MKL Use mkl header mkl_cblas.h instead of the

standard cblas.h
VSMC_USE_MKL_LAPACKE VSMC_HAS_MKL Use mkl header mkl_lapacke.h instead of the

standard lapacke.h

VSMC_USE_MKL_VML VSMC_HAS_MKL Use mkl vector mathematical functions (vml)
VSMC_USE_MKL_VSL VSMC_HAS_MKL Use mkl statistical functions (vsl)
VSMC_CBLAS_INT_TYPE int The default integer type of blas routines
VSMC_ALIGNMENT 32 Default alignment of AlignedAllocator

Table 4.1 Configuration macros
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5 MATHEMATICAL OPERATIONS

5.1 constants

The library defines some mathematical constants in the form of constexpr functions. For example, to get
the value of 𝜋 with a desired precision, one can call the following.

1 auto pi_f = const_pi<float>();

2 auto pi_d = const_pi<double>();

3 auto pi_l = const_pi<long double>();

The compiler will evaluate these values at compile-time and thus there is no performance difference from
hard-coding the constants in the program, while the readability is improved. All defined constants are listed
in table 5.1. Note that all functions has a prefix const_, which is omitted in the table.

5.2 vectorized operations

The library provides a set of functions for vectorized mathematical operations. For example,

1 std::size_t n = 1000;

2 vsmc::Vector<double> a(n), b(n), y(n);

3 // Fill vectors a and b

4 add(n, a.data(), b.data(), y.data());

performs addition for vectors. It is equivalent to

1 for (std::size_t i = 0; i != n; ++i)

2 y[i] = a[i] + b[i];

The functions defined are listed in table 5.2.
For each function, the first parameter is always the length of the vector, and the last is a pointer to the

output vector (except sincos which has two output parameters). For all functions, the output is always a
vector. If there are more than one input parameters, then some of them, but not all, can be scalars. The order
of the input parameters are as they appear in the mathematical expressions. For example, fma perform the
operation 𝑎𝑏 + 𝑐, then the function shall be called as,

1 fma(n, a, b, c, y);

where a, b, c are input parameters, and some of them, not all, can be scalars instead of pointers. And y is
the output parameter, which has to be pointer to a length 𝑛 vector.
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Function Value Function Value Function Value

pi 𝜋 pi_2 2𝜋 pi_inv 1/𝜋
pi_sqr 𝜋2 pi_by2 𝜋/2 pi_by3 𝜋/3
pi_by4 𝜋/4 pi_by6 𝜋/6 pi_2by3 2𝜋/3
pi_3by4 3𝜋/4 pi_4by3 4𝜋/3 sqrt_pi √𝜋
sqrt_pi_2 √2𝜋 sqrt_pi_inv √1/𝜋 sqrt_pi_by2 √𝜋/2
sqrt_pi_by3 √𝜋/3 sqrt_pi_by4 √𝜋/4 sqrt_pi_by6 √𝜋/6
sqrt_pi_2by3 √2𝜋/3 sqrt_pi_3by4 √3𝜋/4 sqrt_pi_4by3 √4𝜋/3
ln_pi ln 𝜋 ln_pi_2 ln 2𝜋 ln_pi_inv ln 1/𝜋
ln_pi_by2 ln 𝜋/2 ln_pi_by3 ln 𝜋/3 ln_pi_by4 ln 𝜋/4
ln_pi_by6 ln 𝜋/6 ln_pi_2by3 ln 2𝜋/3 ln_pi_3by4 ln 3𝜋/4
ln_pi_4by3 ln 4𝜋/3 e e e_inv 1/e
sqrt_e √e sqrt_e_inv √1/e sqrt_2 √2
sqrt_3 √3 sqrt_5 √5 sqrt_10 √10
sqrt_1by2 √1/2 sqrt_1by3 √1/3 sqrt_1by5 √1/5
sqrt_1by10 √1/10 ln_2 ln 2 ln_3 ln 3
ln_5 ln 5 ln_10 ln 10 ln_inv_2 1/ ln 2
ln_inv_3 1/ ln 3 ln_inv_5 1/ ln 5 ln_inv_10 1/ ln 10
ln_ln_2 ln ln 2

Table 5.1 Mathematical constants. Note: All functions are prefixed by const_.
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Function Operation Function Operation Function Operation

add 𝑎 + 𝑏 sub 𝑎 − 𝑏 sqr 𝑎2

mul 𝑎𝑏 abs |𝑎| fma 𝑎𝑏 + 𝑐
inv 1/𝑎 div 𝑎/𝑏 sqrt √𝑎
invsqrt 1/√𝑎 cbrt

3√𝑎 invcbrt 1/ 3√𝑎
pow2o3 𝑎2/3 pow3o2 𝑎3/2 pow 𝑎𝑏

hypot √𝑎2 + 𝑏2 exp e𝑎 exp2 2𝑎

exp10 10𝑎 expm1 e𝑎 − 1 log ln(𝑎)
log2 log2(𝑎) log10 log10(𝑎) log1p ln(𝑎 + 1)
cos cos(𝑎) sin sin(𝑎) sincos sin(𝑎) and cos(𝑎)
tan tan(𝑎) acos arccos(𝑎) asin arcsin(𝑎)
atan arctan(𝑎) acos arccos(𝑎) atan2 arctan(𝑎/𝑏)
cosh cosh(𝑎) sinh sinh(𝑎) tanh tanh(𝑎)
acosh arc cosh(𝑎) asinh arc sinh(𝑎) atanh arc tanh(𝑎)
erf erf(𝑎) erfc erfc(𝑎) cdfnorm 1 − erfc(𝑎/√2)/2
lgamma ln 𝛤(𝑎) tgamma 𝛤(𝑎)

Table 5.2 Vectorized mathematical operations
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6 RESAMPLING

The library supports resampling in a more general way than the algorithm described in chapter 1. Recall that,
given a particle system {𝑊(𝑖), 𝑋(𝑖)}𝑁𝑖=1, a new system {�̄�(𝑖), �̄�(𝑖)}𝑀𝑖=1 is generated. Regardless other statistical
properties, in practice, such an algorithm can be decomposed into three steps. First, a vector {𝑟𝑖}𝑁𝑖=1 is
generated such that ∑𝑁𝑖=1 𝑟𝑖 = 𝑀. Then a vector {𝑎𝑖}𝑀𝑖=1 is generated such that, ∑𝑀𝑖=1 𝕀{𝑗}(𝑎𝑖) = 𝑟𝑗. And last,
set �̄�(𝑖) = 𝑋(𝑎𝑖).

The first step determines the statistical properties of the resampling algorithm. The library defines
all algorithms discussed in Douc, Cappé, and Moulines (2005). Samplers can be constructed with builtin
schemes as seen in section 2.4.2. In addition, samplers can also be constructed with user defined resampling
operations. Below is the signature,

1 template <typename IntType, typename RNGType>

2 void resample(std::size_t M, std::size_t N, RNGType &rng,

3 const double *weight, IntType *replication);

The last parameter is the output vector {𝑟𝑖}𝑁𝑖=1. The builtin schemes are implemented as classes with
operator() conforms to the above signature. For example, ResampleMultinomial implements the multi-
nomial resampling algorithm.

To transform {𝑟𝑖}𝑁𝑖=1 into {𝑎𝑖}
𝑀
𝑖=1, one can call the following function,

1 template <typename IntType1, typename IntType2>

2 void resample_trans_rep_index(std::size_t M, std::size_t N,

3 const IntType1 *replication, IntType2 *index);

where the last parameter is the output vector {𝑎𝑖}𝑀𝑖=1. This function guarantees that 𝑎𝑖 = 𝑖 if 𝑟𝑖 > 0. However,
its output may not be optimal for all applications. The last step of a resampling operation, the copying of
particles can be the most time consuming one, especially on distributed systems. The topology of the system
will need to be taking into consideration to achieve optimal performance. In those situations, it is best to
use ResampleMultinomial etc., to generate the replication numbers, and manually perform the rest of the
resampling algorithm.

6.1 resizing a sampler

Now, we provide an example of changing sampler size,

1 // sampler is an existing Sampler<T> object

2 auto N = sampler.size();
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3 auto &rng = sampler.particle().rng();

4 auto weight = sampler.particle().weight().data();

5 Vector<std::size_t> rep(N);

6 Vector<std::size_t> idx(M);

7 ResampleMultinomial resample;

8 resample(M, N, rng, weight, rep.data());

9 resample_trans_rep_index(M, N, rep.data(), idx.data());

10 Particle<T> particle(M);

11 for (std::size_t i = 0; i != M; ++i) {

12 auto sp_dst = particle.sp(i);

13 auto sp_src = sampler.partice().sp(idx[i]);

14 // Assuming T is a subclass of StateMatrix

15 for (std::size_t d = 0; d != sp_dst.dim(); ++d)

16 sp_dst.state(d) = sp_src.state(d);

17 }

18 // Copy other data of class T if any

19 sampler.particle() = std::move(particle);
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7 RANDOM NUMBER GENERATING

The library has a comprehensive rng system to facilitate implementation of Monte Carlo algorithms.

7.1 seeding

The singleton class template SeedGenerator can be used to generate distinctive seed sequentially. For
example,

1 auto &seed = SeedGenerator<void, unsigned>::instance();

2 RNG rng1(seed.get()); // Construct rng1

3 RNG rng2(seed.get()); // Construct rng2 with another seed

Thefirst argument to the template can be any type. For different types, different instances of SeedGenerator
will be created. Thus, the seeds generated by SeedGenerator<T1> and SeedGenerator<T2> will be inde-
pendent. The second parameter is the type of the seed values. It can be an unsigned integer type. Classes
such as Particle<T> will use the generator of the following type,

1 using Seed = SeedGenerator<NullType, VSMC_SEED_RESULT_TYPE>;

where VSMC_SEED_RESULT_TYPE is a configuration macro which is defined to unsigned by default.
One can save and set the seed generator using standard C++ streams. For example

1 std::ifstream seed_txt("seed.txt");

2 if (seed_txt.good())

3 seed_txt >> Seed::instance(); // Read seed from a file

4 else

5 Seed::instance().set(101); // The default seed

6 seed_txt.close();

7 // The program

8 std::ofstream seed_txt("seed.txt");

9 seed_txt << Seed::instance(); // Write the seed to a file

10 seed_txt.close();

This way, if the simulation program need to be repeated multiple times, each time is will use a different set
of seeds.

A single seed generator is enough for a single computer program. However, it is more difficult to ensure
that each computing node has a distinctive set of seeds in a distributed system. A simple solution is to use
the modulomethod of SeedGenerator. For example,
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1 Seed::instance().modulo(n, r);

where 𝑛 is the number of processes and 𝑟 is the rank of the current node. After this call, all seeds generated
will belong to the equivalent class 𝑠 ≡ 𝑟 mod 𝑛. Therefore, no two nodes will ever generate the same seeds.

7.2 counter-based rng

The standard library provides a set of rng classes. Unfortunately, none of them are suitable for parallel
computing without considerable efforts.

The development by Salmon et al. (2011) made high performance parallel rng much more accessible
than it was before. In the author’s personal opinion, it is the most significant development for parallel Monte
Carlo algorithms in recent memory. See the paper for more details. Here, it is sufficient to mention that,
the rng introduced in the paper use a deterministic function 𝑓𝑘, such that, for any sequence {𝑐𝑖}𝑖>0, the
sequence {𝑦𝑖}𝑖>0, 𝑦𝑖 = 𝑓𝑘(𝑐𝑖), appears as random. In addition, for 𝑘1 ≠ 𝑘2, 𝑓𝑘1 and 𝑓𝑘2 will generate two
sequences that appear statistically independent. Compared tomore conventional rngs which use recursions
𝑦𝑖 = 𝑓(𝑦𝑖−1), these counter-based rngs are much easier to setup in a parallelized environment.

If 𝑐, the counter, is an unsigned integer with 𝑏 bits, and 𝑘, the key, is an unsigned integer with 𝑑 bits.
Then for each 𝑘, the rng has a period 2𝑏. And there can be at most 2𝑑 independent streams. Table 7.1 lists
all counter-based rngs implemented in this library, along with the bits of the counter and the key. They
all conform to the C++11 uniform rng concept. All rngs in Salmon et al. (2011) are implemented along
with a few additions. Note that, the actual period of an rng can be longer. For example, Philox4x64 has a
256-bits counter but output 64-bits integers. And thus it has a 21024 period. Such period length may seems
very small compared to many well known rngs. For example, the famous Mersenne-Twister generator
(std::mt19937) has a period 219937 − 1. However, combined with 2256 independent streams, only the most
demanding programs will find these counter-base rngs insufficient.

7.2.1 aes-ni intrinsics based rng

The aes-ni intrinsics based rngs in Salmon et al. (2011) are implemented in a more general form,

1 template <typename ResultType, typename KeySeqType, std::size_t Rounds,

2 std::size_t Blocks>

3 using AESNIEngine =

4 CounterEngine<AESNIGenerator<ResultType, KeySeqType, Rounds, Blocks>>;

where KeySeqType is the class used to generate the sequence of round keys; Rounds is the number of rounds
of aes encryption to be performed. See the reference manual for details of how to define the key sequence
class. The aes-ni intrinsics have a latency of seven or eight cycles, while they can be issued at every cycle.
Therefore better performance can be achieved if multiple 128-bits random integers are generated at the same
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Bits

Class Result type Counter Key

AES128_Bx32 std::uint32_t 128 128
AES128_Bx64 std::uint64_t 128 128
AES192_Bx32 std::uint32_t 128 192
AES192_Bx64 std::uint64_t 128 192
AES256_Bx32 std::uint32_t 128 256
AES256_Bx64 std::uint64_t 128 256
ARS_Bx32 std::uint32_t 128 128
ARS_Bx64 std::uint64_t 128 128
Philox2x32V std::uint32_t 64 64
Philox2x64V std::uint64_t 128 128
Philox4x32V std::uint32_t 128 128
Philox4x64V std::uint64_t 256 256
Threefry2x32V std::uint32_t 64 64
Threefry2x64V std::uint64_t 128 128
Threefry4x32V std::uint32_t 128 128
Threefry4x64V std::uint64_t 256 256

Table 7.1 Counter-based rng; B: either 1, 2, 4, or 8; V: either empty, SSE2, or AVX2.

time. This is specified by the template parameter Blocks. Larger blocks, up to eight, can improve runtime
performance but this is at the cost of larger state size.

Four types of key sequences are implemented by the library, corresponding to the ars algorithm in
Salmon et al. (2011) and the aes-128, aes-192, and aes-256 algorithms. The following rng engines are
defined.

1 template <typename ResultType, std::size_t Rounds = VSMC_RNG_ARS_ROUNDS,

2 std::size_t Blocks = VSMC_RNG_ARS_BLOCKS>

3 using ARSEngine =

4 AESNIEngine<ResultType, ARSKeySeq<ResultType>, Rounds, Blocks>;

5 template <typename ResultType, std::size_t Blocks = VSMC_RNG_AES_BLOCKS>

6 using AES128Engine =

7 AESNIEngine<ResultType, AES128KeySeq<ResultType, 10>, 10, Blocks>;

8 template <typename ResultType, std::size_t Blocks = VSMC_RNG_AES_BLOCKS>
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Macro Default

VSMC_RNG_AES_BLOCKS 4

VSMC_RNG_ARS_ROUNDS 5

VSMC_RNG_ARS_BLOCKS 4

VSMC_RNG_PHILOX_ROUNDS 10

VSMC_RNG_PHILOX_VECTOR_LENGTH 4

VSMC_RNG_THREEFRY_ROUNDS 20

VSMC_RNG_THREEFRY_VECTOR_LENGTH 4

Table 7.2 Configuration macros for the counter-based rng

9 using AES192Engine =

10 AESNIEngine<ResultType, AES192KeySeq<ResultType, 12>, 12, Blocks>;

11 template <typename ResultType, std::size_t Blocks = VSMC_RNG_AES_BLOCKS>

12 using AES256Engine =

13 AESNIEngine<ResultType, AES256KeySeq<ResultType, 14>, 14, Blocks>;

The default template arguments can be changed by configuration macros listed in table 7.2. Shortcuts are
also defined, as listed in table 7.1. For example, ARS_4x32 is ARSEngine with result type std::uint32_t,
four blocks, and the default number of rounds.

7.2.2 Philox

The Philox algorithm in Salmon et al. (2011) is implemented in a more general form,

1 template <typename ResultType, std::size_t K = VSMC_RNG_PHILOX_VECTOR_LENGTH,

2 std::size_t Rounds = VSMC_RNG_PHILOX_ROUNDS>

3 using PhiloxEngine = CounterEngine<PhiloxGenerator<ResultType, K, Rounds>>;

The default vector length and the number of rounds can be changed by configuration macros listed in
table ??. Shortcuts are also defined, as listed in table 7.1. For example, Philox4x32 is PhiloxEngine with
result type std::uint32_t, vector length four, and the default number of rounds.

7.2.3 Threefry

TheThreefry algorithm in Salmon et al. (2011) is implemented in a more general form,
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1 template <typename ResultType, std::size_t K = VSMC_RNG_THREEFRY_VECTOR_LENGTH,

2 std::size_t Rounds = VSMC_RNG_THREEFRY_ROUNDS>

3 using ThreefryEngine = CounterEngine<ThreefryGenerator<ResultType, K, Rounds>>;

The default vector length and the number of rounds can be changed by configuration macros listed in
table ??. Shortcuts are also defined, as listed in table 7.1. For example, Threefry4x32 is ThreefryEngine
with result type std::uint32_t, vector length four, and the default number of rounds.

If sse2 intrinsics are supported, then amore optimized version is also implemented. This implementation
can have higher performance at the cost of larger state size. If avx2 intrinsics are supported, then a even
more optimized, with even larger state size version is also implemented.

1 template <typename ResultType, std::size_t K = VSMC_RNG_THREEFRY_VECTOR_LENGTH,

2 std::size_t Rounds = VSMC_RNG_THREEFRY_ROUNDS>

3 using ThreefryEngineSSE2 =

4 CounterEngine<ThreefryGeneratorSSE2<ResultType, K, Rounds>>;

5 template <typename ResultType, std::size_t K = VSMC_RNG_THREEFRY_VECTOR_LENGTH,

6 std::size_t Rounds = VSMC_RNG_THREEFRY_ROUNDS>

7 using ThreefryEngineAVX2 =

8 CounterEngine<ThreefryGeneratorAVX2<ResultType, K, Rounds>>;

7.2.4 Default rng

Note that, not all rngs defined by the library is available on all platforms. The library also defines a type
alias RNG which is one of the rngs listed in table 7.1. More specifically, if the aes-ni intrinsics are supported,

1 using RNG = ARS_4x32;

otherwise if avx2 intrinsics are supported,

1 using RNG = Threefry4x32AVX2;

otherwise if sse2 intrinsics are supported,

1 using RNG = Threefry4x32SSE2;

and last, on all other platforms,

1 using RNG = Threefry4x32;

This can be changed by the configuration macro VSMC_RNG_TYPE.
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Class mkl brng

MKL_MCG59 VSL_BRNG_MCG59

MKL_MT19937 VSL_BRNG_MT19937

MKL_MT2203 VSL_BRNG_MT2203

MKL_SFMT19937 VSL_BRNG_SFMT19937

MKL_NONDETERM VSL_BRNG_NONDETERM

MKL_ARS5 VSL_BRNG_ARS5

MKL_PHILOX4X32X10 VSL_BRNG_PHILOX4X32X10

Table 7.3 mkl rng. Note: all classes can have a suffix _64.

7.3 non-deterministic rng

If the rdrand intrinsics are supported, the library also implement three rngs, RDRAND16, RDRAND32 and
RDRAND64. They output 16-, 32-, and 64-bits random unsigned integers, respectively.

7.4 mkl rng

The mkl library provides some high performance rngs. The library implement a wrapper class MKLEngine
that makes them accessible as C++11 generators. They are listed in table 7.3. Note that, mkl rngs performs
best when they are used to generate vectors of random numbers. These wrappers use a buffer to store such
vectors. And thus they have much larger state space than usual rngs.

7.5 multiple rng streams

Earlier in section 2.3.3 we introduced that particle.rng(i) returns an independent rng instance. This is
actually done through a class template called RNGSet. Three of them are implemented in the library. They
all have the same interface,

1 RNGSet<RNG> rng_set(N); // A set of N RNGs

2 rng_set.resize(n); // Change the size of the set

3 rng_set.seed(); // Seed each RNG in the set with Seed::instance()

4 rng_set[i]; // Get a reference to the i-th RNG

The first implementation is RNGSetScalar. As its name suggests, it is only a wrapper of a single rng. All
calls to rng_set[i] returns a reference to the same rng. It is only useful when an RNGSet interface is
required while the thread-safety and other issues are not important.
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The second implementation is RNGSetVector. It is an array of rngs with length𝑁. It has memory cost
𝑂(𝑁). Many of the counter-based rngs have small state size and thus for moderate𝑁, this cost is not an
issue. The method calls rng_set[i] and rng_set[j] return independent rngs if 𝑖 ≠ 𝑗.

Last, if tbb is available, there is a third implementation RNGSetTBB, which uses thread-local storage
(tls). It has much smaller memory footprint than RNGSetVector while maintains better thread-safety. The
performance impact of using tls is minimal unless the computation at the calling site is trivial. For example,

1 std::size_t eval_pre(SingleParticle<T> sp)

2 {

3 auto &rng = sp.rng();

4 // using rng to initialize state

5 // do some computation, likely far more costly than TLS

6 }

The type alias RNGSet is defined to be RNGSetTBB if tbb is available, otherwise defined to be RNGSetVector.
It is used by the Particle class template. One can replace the type of rng set used by Particle<T> with a
member type of T. For example,

1 class T

2 {

3 using rng_set_type = /* User defined type */;

4 };

will make the rng set used by Particle<T> replaced by the user defined type.

7.6 distributions

The library also provides implementations of some common distributions. They all conforms to the C++11
random number distribution concepts. Some of them are the same as those in the C++11 standard library,
with CamelCase names. For example, NormalDistribuiton can be used as an drop-in replacement for
std::normal_distribuiton. This includes all of the continuous distributions defined in the standard
library. Their benefits compared to the standard library will be discussed later. Table 7.4 lists all the
additional distributions implemented.

The last, the library also implement the multivariate Normal distribution. Its usable is summarized by
the following.

1 double mean[2] = { /* the mean vector */ };

2 double cov[4] = { /* the covariance matrix */ };

3 double chol[3];

4 double r[2];
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Class Notes

UniformBits No parameters, uniform on the set {0,… , 2𝑏 − 1}, where 𝑏 is the number of bits
of the result type, which has to be an unsigned integer type.

U01 No parameters, uniform on [0, 1)
U01CC No parameters, uniform on [0, 1]
U01CO No parameters, uniform on [0, 1)
U01OC No parameters, uniform on (0, 1]
U01OO No parameters, uniform on (0, 1)
Laplace Parameters: location a; scale b
Levy Parameters: location a; scale b
Pareto Parameters: shape a; scale b
Rayleigh Parameters: scale sigma

Table 7.4 Random number distributions. Note: all class names have a suffix Distribution which is omitted
in the table

5 // Compute the lower triangular of the Cholesky decomposition

6 cov_chol(2, cov, chol);

7 RNG rng;

8 NormalMVDistribution<double, 2> norm2(mean, chol); // Bivariate Normal

9 NormalMVDistribution<double, Dynamic> normd(2, mean, chol); // Same as above

10 norm2(rng, r); // Generate a bivariate Normal

11 normd(rng, r); // Same as above

We shall mention here that the static form, where the dimension is specified as a template parameter is more
efficient.

7.7 vectorized random number generating

The rngs and distributions implemented by this library provides vectorized operations. For example,

1 std::size_t n = 1000;

2 RNG rng;

3 NormalDistribution<double> norm(0, 1);

4 Vector<RNG::result_type> u(n);

5 Vector<double> r(n);

6 rng(n, u.data()); // Generate n random unsigned integers

7 rng_rand(rng, n, u.data()); // Same as above
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8 norm(rng, n, r.data()); // Generate n Normal random numbers

9 normal_distribution(rng, n, r.data(), 0.0, 1.0); // Same as above

10 normal_distribution(rng, n, r.data(), norm.param()); // Same as above

11 rng_rand(rng, norm, n, r.data()); // Same as above

Note that these functions will be specialized to use mkl routines if rng is one of the engines listed in table 7.3.
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The library provides some utilities for writing Monte Carlo simulation programs. For some of them, such as
command line option processing, there are more advanced, dedicated libraries out there. The library only
provides some basic functionality that is sufficient for most simple cases.

8.1 aligned memory allocation

The standard library class std::allocator is used by containers to allocate memory. It works fine in most
cases. However, sometime it is desired to allocate memory aligned by a certain boundary. The library
provides the class template,

1 template <typename T, std::size_t Alignment = VSMC_ALIGNMENT,

2 typename Memory = AlignedMemory>

3 class AlignedAllocator;

where the configuration macro VSMC_ALIGNMENT is defined to be 32 by default. For the requirement of the
parameter type Memory, see the reference manual. It is sufficient to mention here that the default implemen-
tation works best if tbb is available. This class can be used as a drop-in replacement of std::allocator<T>.
In fact, this library defines a type alias Vector<T> which is std::vector<T, AlignedAllocator<T>> if T
is a scalar type, and std::vector<T> otherwise.

8.2 sample covariance estimating

The library provides some basic functionality to estimate sample variance. For example,

1 constexpr std::size_t d = /* Dimension */;

2 using T = StateMatrix<RowMajor, d, double>;

3 Sampler<T> sampler(N);

4 // operations on the sampler

5 double mean[d];

6 double cov[d * d];

7 Covariance eval;

8 auto x = sampler.particle().value().data();

9 auto w = sampler.particle().weight().data();

10 eval(RowMajor, N, d, x, w, mean, cov);
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The sample covariance matrix will be computed and stored in cov. The mean vector is stored in mean.
Note that, if any of them is a null pointer, then the corresponding output is not computed. The sample x
is assumed to be stored in an 𝑁 by 𝑑 matrix. The first argument passed to eval is the storage layout of
this matrix. If x is a null pointer, then no computation will be done. If w is a null pointer, then the weight
is assumed to be equal for all samples. The method has three additional optional parameters. The first is
cov_layout, which specifies the covariance matrix storage layout. The second is cov_upper and the third
cov_packed, both are false by default. If the later is cov_packed, a packed vector of length 𝑑(𝑑 + 1)/2 is
written into cov. If cov_upper is false, then the upper triangular is packed, otherwise the lower triangular
is packed.

The estimated covariance matrix is often used to construct multivariate Normal distribution for the
purpose of generating random walk scales. The NormalMVDistribution in section 7.6 accepts the lower
triangular of the Cholesky decomposition of the covariance instead of the covariance matrix itself. The
following function will compute this decomposition,

1 double chol[d * (d + 1) / 2];

2 cov_chol(d, cov, chol);

The output chol is a packed vector in row major storage. This function also has three optional parameters,
which are the same as those of Covariance::operator(), except that they are now used to specify the
storage scheme of the input parameter cov.

8.3 storing objects in hdf5

If the hdf5 library is available, it is possible to store Sampler<T> objects, etc., in the hdf5 format. For
example,

1 hdf5store(sampler, "pf.h5", "sampler");

create a hdf5 file with the sampler stored as a list. In R it can be processed as the following,

1 library(rhdf5)

2 pf <- as.data.frame(h5read("pf.h5", "sampler"))

This creates a data.frame similar to that shown in section 2.4.2. Other types of objects can also be store,
see the reference manual for details.

8.4 raii classes for mkl pointers

The library provides a few classes to manage mkl pointers. It provides Resource Acquisition Is Initialization
(raii) idiom on top of the mkl C interface. For example,
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Class mkl pointer type

MKLStream VSLStreamStatePtr

MKLSSTask VSLSSTaskPtr

MKLConvTask VSLConvTask

MKLCorrTask VSLCorrTask

MKLDFTask DFTaskPtr

Table 8.1 raii classes for mkl pointers

1 // VSLSSTaskPtr ptr;

2 // vsldSSNewTask(&ptr, &p, &n, &xstorage, x, w, indices);

3 MKLSSTask<double> task(&p, &n, &xstorage, x, w, indices);

4 // vsldSSEditMoments(ptr, mean, r2m, r3m, r4m, c2m, c3m, c4m);

5 task.edit_moments(mean, r2m, r3m, r4m, c2m, c3m, c4m);

6 // vsldSSCompute(ptr, estimates, method);

7 task.compute(estimates, method)

8 // vslSSDeleteTask(&ptr);

In the above snippets, MKLSSTaskmanages a VSLSSTaskPtr task pointer. All C functions that operates on
the pointer, is also defined as methods in the class. Table 8.1 lists the classes defined by the library and their
corresponding mkl pointers.

8.5 program options

The library provides some basic support of processing command line program options. Here we show a
minimal example. The complete program is shown in appendix a.3. First, one need to allocated variables to
store the options to be processed.

1 int n;

2 std::string str;

3 std::vector<double> vec;

All types that support standard library i/o stream operations are supported. In addition, std::vector<T>,
where T is a type that supports standard library i/o stream operations is also supported. Then,

1 ProgramOptionMap option_map;

constructs the container of options. Options can be added to the map,
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1 option_map

2 .add("str", "A string option with a default value", &str, "default")

3 .add("n", "An integer option", &n)

4 .add("vec", "A vector option", &vec);

The first argument is the name of the option, the second is a description, and the third is a pointer to where
the option’s value shall be stored. The last optional argument is a default value. The options on the command
line can be processed as the following,

1 option_map.process(argc, argv);

where argc and argv are the arguments of the main function. When the program is invoked, each option
can be passed like below,

1 ./program_option --vec 1 2 1e-1 --str "abc" --vec 8 9 --str "def hij" --n 2 4

The results of the option processing is displayed below,

1 n: 4

2 str: def hij

3 vec: 1 2 0.1 8 9

To summarize these output, the same option can be specified multiple times. If it is a scalar option, the last
one is used (--str, --n). A string option’s value can be grouped by quotes. For a vector option (--vec), all
values are gather together and inserted into the vector.

8.6 program progress

Sometime it is desirable to see how much progress of a program has been made. The library provide a
Progress class for this purpose. Here we show a minimal example. The complete program is shown in
appendix a.4.

1 vsmc::Progress progress;

2 progress.start(n * n);

3 for (std::size_t i = 0; i != n; ++i) {

4 std::stringstream ss;

5 ss << "i = " << i;

6 progress.message(ss.str());

7 for (std::size_t j = 0; j != n; ++j) {

8 // Do some computation

9 progress.increment();
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10 }

11 }

12 progress.stop();

When invoked, the program output something similar the below

1 [ 4%][00:07][ 49019/1000000][i = 49]

Themethod progress.start(n * n) starts the printing of the progress. The argument specifies howmany
iterations there will be before it is stopped. Themethod progress.message(ss.str()) direct the program
to print a message. This is optional. Each time after we finish 𝑛 iterations, we increment the progress
count by calling progress.increment(). And after everything is finished, the method progress.stop()

is called.

8.7 timing

Performance can only be improved after it is first properly benchmarked. There are advanced profiling
programs for this purpose. However, sometime simple timing facilities are enough. The library provides a
simple class StopWatch for this purpose. As its name suggests, it works much like a physical stop watch.
Here is a simple example

1 StopWatch watch;

2 for (std::size_t i = 0; i != n; ++i) {

3 // Some computation

4 watch.start();

5 // Computation to be benchmarked;

6 watch.stop();

7 // Some other computation

8 }

9 double t = watch.seconds(); // The time in seconds

The above example demonstrate that timing can be accumulated between loop iterations, function calls,
etc. It shall be noted that, the time is only accurate if the computation between watch.start() and
watch.stop() is non-trivial.
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A SOURCE CODE OF COMPLETE PROGRAMS

a.1 sequential implementation of a simple particle filter

1 #include <vsmc/vsmc.hpp>

2 static constexpr std::size_t N = 1000; // Number of particles

3 static constexpr std::size_t n = 100; // Number of data points

4 static constexpr std::size_t PosX = 0;

5 static constexpr std::size_t PosY = 1;

6 static constexpr std::size_t VelX = 2;

7 static constexpr std::size_t VelY = 3;

8 using PFStateBase = vsmc::StateMatrix<vsmc::RowMajor, 4, double>;

9 class PFState : public PFStateBase

10 {

11 public:

12 using PFStateBase::PFStateBase;

13 double log_likelihood(std::size_t t, size_type i) const

14 {

15 double llh_x = 10 * (this->state(i, PosX) - obs_x_[t]);

16 double llh_y = 10 * (this->state(i, PosY) - obs_y_[t]);

17 llh_x = std::log(1 + llh_x * llh_x / 10);

18 llh_y = std::log(1 + llh_y * llh_y / 10);

19 return -0.5 * (10 + 1) * (llh_x + llh_y);

20 }

21 void read_data(const char *param)

22 {

23 if (param == nullptr)

24 return;

25 obs_x_.resize(n);

61



source code of complete programs

26 obs_y_.resize(n);

27 std::ifstream data(param);

28 for (std::size_t i = 0; i != n; ++i)

29 data >> obs_x_[i] >> obs_y_[i];

30 data.close();

31 }

32 private:

33 vsmc::Vector<double> obs_x_;

34 vsmc::Vector<double> obs_y_;

35 };

36 class PFInit

37 {

38 public:

39 std::size_t operator()(vsmc::Particle<PFState> &particle, void *param)

40 {

41 eval_param(particle, param);

42 eval_pre(particle);

43 std::size_t acc = 0;

44 for (auto sp : particle)

45 acc += eval_sp(sp);

46 eval_post(particle);

47 return acc;

48 }

49 void eval_param(vsmc::Particle<PFState> &particle, void *param)

50 {

51 particle.value().read_data(static_cast<const char *>(param));

52 }

53 void eval_pre(vsmc::Particle<PFState> &particle)

54 {

55 w_.resize(particle.size());

56 }

57 std::size_t eval_sp(vsmc::SingleParticle<PFState> sp)
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58 {

59 vsmc::NormalDistribution<double> norm_pos(0, 2);

60 vsmc::NormalDistribution<double> norm_vel(0, 1);

61 sp.state(PosX) = norm_pos(sp.rng());

62 sp.state(PosY) = norm_pos(sp.rng());

63 sp.state(VelX) = norm_vel(sp.rng());

64 sp.state(VelY) = norm_vel(sp.rng());

65 w_[sp.id()] = sp.particle().value().log_likelihood(0, sp.id());

66 return 0;

67 }

68 void eval_post(vsmc::Particle<PFState> &particle)

69 {

70 particle.weight().set_log(w_.data());

71 }

72 private:

73 vsmc::Vector<double> w_;

74 };

75 class PFMove

76 {

77 public:

78 std::size_t operator()(std::size_t t, vsmc::Particle<PFState> &particle)

79 {

80 eval_pre(t, particle);

81 std::size_t acc = 0;

82 for (auto sp : particle)

83 acc += eval_sp(t, sp);

84 eval_post(t, particle);

85 return 0;

86 }

87 void eval_pre(std::size_t t, vsmc::Particle<PFState> &particle)

88 {

89 w_.resize(particle.size());
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90 }

91 std::size_t eval_sp(std::size_t t, vsmc::SingleParticle<PFState> sp)

92 {

93 vsmc::NormalDistribution<double> norm_pos(0, std::sqrt(0.02));

94 vsmc::NormalDistribution<double> norm_vel(0, std::sqrt(0.001));

95 sp.state(PosX) += norm_pos(sp.rng()) + 0.1 * sp.state(VelX);

96 sp.state(PosY) += norm_pos(sp.rng()) + 0.1 * sp.state(VelY);

97 sp.state(VelX) += norm_vel(sp.rng());

98 sp.state(VelY) += norm_vel(sp.rng());

99 w_[sp.id()] = sp.particle().value().log_likelihood(t, sp.id());

100 return 0;

101 }

102 void eval_post(std::size_t t, vsmc::Particle<PFState> &particle)

103 {

104 particle.weight().add_log(w_.data());

105 }

106 private:

107 vsmc::Vector<double> w_;

108 };

109 class PFMEval

110 {

111 public:

112 void operator()(std::size_t t, std::size_t dim,

113 vsmc::Particle<PFState> &particle, double *r)

114 {

115 eval_pre(t, particle);

116 for (std::size_t i = 0; i != particle.size(); ++i, r += dim)

117 eval_sp(t, dim, particle.sp(i), r);

118 eval_post(t, particle);

119 }

120 void eval_pre(std::size_t t, vsmc::Particle<PFState> &particle) {}
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121 void eval_sp(std::size_t t, std::size_t dim,

122 vsmc::SingleParticle<PFState> sp, double *r)

123 {

124 r[0] = sp.state(PosX);

125 r[1] = sp.state(PosY);

126 }

127 void eval_post(std::size_t t, vsmc::Particle<PFState> &particle) {}

128 };

129 int main()

130 {

131 vsmc::Sampler<PFState> sampler(N, vsmc::Multinomial, 0.5);

132 sampler.init(PFInit()).move(PFMove(), false).monitor("pos", 2, PFMEval());

133 sampler.initialize(const_cast<char *>("pf.data")).iterate(n - 1);

134 std::ofstream output("pf.out");

135 output << sampler;

136 output.close();

137 return 0;

138 }

a.2 parallelized implementation of a simple particle filter

1 #include <vsmc/vsmc.hpp>

2 static constexpr std::size_t N = 1000; // Number of particles

3 static constexpr std::size_t n = 100; // Number of data points

4 using PFStateBase = vsmc::StateMatrix<vsmc::RowMajor, 4, double>;

5 template <typename T>

6 using PFStateSPBase = PFStateBase::single_particle_type<T>;

7 class PFState : public PFStateBase

8 {
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9 public:

10 using PFStateBase::StateMatrix;

11 template <typename S>

12 class single_particle_type : public PFStateSPBase<S>

13 {

14 public:

15 using PFStateSPBase<S>::single_particle_type;

16 double &pos_x() { return this->state(0); }

17 double &pos_y() { return this->state(1); }

18 double &vel_x() { return this->state(2); }

19 double &vel_y() { return this->state(3); }

20 double log_likelihood(std::size_t t)

21 {

22 double llh_x = 10 * (pos_x() - obs_x(t));

23 double llh_y = 10 * (pos_y() - obs_y(t));

24 llh_x = std::log(1 + llh_x * llh_x / 10);

25 llh_y = std::log(1 + llh_y * llh_y / 10);

26 return -0.5 * (10 + 1) * (llh_x + llh_y);

27 }

28 private:

29 double obs_x(std::size_t t)

30 {

31 return this->particle().value().obs_x_[t];

32 }

33 double obs_y(std::size_t t)

34 {

35 return this->particle().value().obs_y_[t];

36 }

37 };

38 void read_data(const char *param)

39 {
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40 if (param == nullptr)

41 return;

42 obs_x_.resize(n);

43 obs_y_.resize(n);

44 std::ifstream data(param);

45 for (std::size_t i = 0; i != n; ++i)

46 data >> obs_x_[i] >> obs_y_[i];

47 data.close();

48 }

49 private:

50 vsmc::Vector<double> obs_x_;

51 vsmc::Vector<double> obs_y_;

52 };

53 class PFInit : public vsmc::InitializeTBB<PFState, PFInit>

54 {

55 public:

56 void eval_param(vsmc::Particle<PFState> &particle, void *param)

57 {

58 particle.value().read_data(static_cast<const char *>(param));

59 }

60 void eval_pre(vsmc::Particle<PFState> &particle)

61 {

62 w_.resize(particle.size());

63 }

64 std::size_t eval_sp(vsmc::SingleParticle<PFState> sp)

65 {

66 vsmc::NormalDistribution<double> norm_pos(0, 2);

67 vsmc::NormalDistribution<double> norm_vel(0, 1);

68 sp.pos_x() = norm_pos(sp.rng());

69 sp.pos_y() = norm_pos(sp.rng());

70 sp.vel_x() = norm_vel(sp.rng());

71 sp.vel_y() = norm_vel(sp.rng());

72 w_[sp.id()] = sp.log_likelihood(0);
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73 return 0;

74 }

75 void eval_post(vsmc::Particle<PFState> &particle)

76 {

77 particle.weight().set_log(w_.data());

78 }

79 private:

80 vsmc::Vector<double> w_;

81 };

82 class PFMove : public vsmc::MoveTBB<PFState, PFMove>

83 {

84 public:

85 void eval_pre(std::size_t t, vsmc::Particle<PFState> &particle)

86 {

87 w_.resize(particle.size());

88 }

89 std::size_t eval_sp(std::size_t t, vsmc::SingleParticle<PFState> sp)

90 {

91 vsmc::NormalDistribution<double> norm_pos(0, std::sqrt(0.02));

92 vsmc::NormalDistribution<double> norm_vel(0, std::sqrt(0.001));

93 sp.pos_x() += norm_pos(sp.rng()) + 0.1 * sp.vel_x();

94 sp.pos_y() += norm_pos(sp.rng()) + 0.1 * sp.vel_y();

95 sp.vel_x() += norm_vel(sp.rng());

96 sp.vel_y() += norm_vel(sp.rng());

97 w_[sp.id()] = sp.log_likelihood(t);

98 return 0;

99 }

100 void eval_post(std::size_t t, vsmc::Particle<PFState> &particle)

101 {

102 particle.weight().add_log(w_.data());

103 }
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104 private:

105 vsmc::Vector<double> w_;

106 };

107 class PFMEval : public vsmc::MonitorEvalTBB<PFState, PFMEval>

108 {

109 public:

110 void eval_sp(std::size_t t, std::size_t dim,

111 vsmc::SingleParticle<PFState> sp, double *r)

112 {

113 r[0] = sp.pos_x();

114 r[1] = sp.pos_y();

115 }

116 };

117 int main()

118 {

119 vsmc::Sampler<PFState> sampler(N, vsmc::Multinomial, 0.5);

120 sampler.init(PFInit()).move(PFMove(), false).monitor("pos", 2, PFMEval());

121 sampler.initialize(const_cast<char *>("pf.data")).iterate(n - 1);

122 std::ofstream output("pf.out");

123 output << sampler;

124 output.close();

125 return 0;

126 }

a.3 processing command line program options

1 #include <vsmc/vsmc.hpp>

2 int main(int argc, char **argv)

3 {

4 int n;

5 std::string str;
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6 std::vector<double> vec;

7 vsmc::ProgramOptionMap option_map;

8 option_map

9 .add("str", "A string option with a default value", &str, "default")

10 .add("n", "An integer option", &n)

11 .add("vec", "A vector option", &vec);

12 option_map.process(argc, argv);

13 std::cout << "n: " << n << std::endl;

14 std::cout << "str: " << str << std::endl;

15 std::cout << "vec: ";

16 for (auto v : vec)

17 std::cout << v << ' ';

18 std::cout << std::endl;

19 return 0;

20 }

a.4 display program progress

1 #include <vsmc/vsmc.hpp>

2 int main()

3 {

4 vsmc::RNG rng;

5 vsmc::FisherFDistribution<double> dist(10, 20);

6 std::size_t n = 1000;

7 double r = 0;

8 vsmc::Progress progress;

9 progress.start(n * n);

10 for (std::size_t i = 0; i != n; ++i) {

11 std::stringstream ss;

12 ss << "i = " << i;

13 progress.message(ss.str());

14 for (std::size_t j = 0; j != n; ++j) {

15 for (std::size_t k = 0; k != n; ++k)
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16 r += dist(rng);

17 progress.increment();

18 }

19 }

20 progress.stop();

21 return 0;

22 }
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