32 #ifndef VSMC_RNG_CAUCHY_DISTRIBUTION_HPP 33 #define VSMC_RNG_CAUCHY_DISTRIBUTION_HPP 44 template <
typename RealType>
54 template <
typename RealType>
63 return std::numeric_limits<result_type>::lowest();
71 template <
typename RNGType>
77 param.
b() *
std::tan(const_pi<result_type>() *
u01(rng));
84 template <std::
size_t,
typename RealType,
typename RNGType>
86 RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
89 mul(n, const_pi<RealType>(), r, r);
103 #endif // VSMC_RNG_CAUCHY_DISTRIBUTION_HPP
bool cauchy_distribution_check_param(RealType, RealType b)
void mul(std::size_t n, const float *a, const float *b, float *y)
#define VSMC_DEFINE_RNG_DISTRIBUTION_2(Name, name, p1, v1, p2, v2)
#define VSMC_DEFINE_RNG_DISTRIBUTION_IMPL_2(name, p1, p2)
RealType u01(UIntType u) noexcept
Convert uniform unsigned integers to floating points within [0, 1].
void cauchy_distribution_impl(RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
#define VSMC_DEFINE_RNG_DISTRIBUTION_MEMBER_0
void fma(std::size_t n, const T *a, const T *b, const T *c, T *y)
For , compute .
#define VSMC_DEFINE_RNG_DISTRIBUTION_RAND_2(Name, name, p1, p2)
void tan(std::size_t n, const float *a, float *y)
Standard uniform distribution on [0, 1)
void u01_co_distribution(MKLEngine< BRNG, Bits > &rng, std::size_t n, float *r)