vSMC  v3.0.0
Scalable Monte Carlo
laplace_distribution.hpp
Go to the documentation of this file.
1 //============================================================================
2 // vSMC/include/vsmc/rng/laplace_distribution.hpp
3 //----------------------------------------------------------------------------
4 // vSMC: Scalable Monte Carlo
5 //----------------------------------------------------------------------------
6 // Copyright (c) 2013-2016, Yan Zhou
7 // All rights reserved.
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are met:
11 //
12 // Redistributions of source code must retain the above copyright notice,
13 // this list of conditions and the following disclaimer.
14 //
15 // Redistributions in binary form must reproduce the above copyright notice,
16 // this list of conditions and the following disclaimer in the documentation
17 // and/or other materials provided with the distribution.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS
20 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 // POSSIBILITY OF SUCH DAMAGE.
30 //============================================================================
31 
32 #ifndef VSMC_RNG_LAPLACE_DISTRIBUTION_HPP
33 #define VSMC_RNG_LAPLACE_DISTRIBUTION_HPP
34 
37 
38 #define VSMC_RUNTIME_ASSERT_RNG_LAPLACE_DISTRIBUTION_PARAM_CHECK(b) \
39  VSMC_RUNTIME_ASSERT((b > 0), "**LaplaceDistribution** CONSTRUCTED " \
40  "WITH INVALID SCALE PARAMETER VALUE")
41 
42 namespace vsmc
43 {
44 
45 namespace internal
46 {
47 
48 template <typename RealType>
49 inline bool laplace_distribution_check_param(RealType, RealType b)
50 {
51  return b > 0;
52 }
53 
54 } // namespace vsmc::internal
55 
58 template <typename RealType>
60 {
61  VSMC_DEFINE_RNG_DISTRIBUTION_2(Laplace, laplace, a, 0, b, 1)
63 
64  public:
65  result_type min() const
66  {
67  return std::numeric_limits<result_type>::lowest();
68  }
69 
70  result_type max() const { return std::numeric_limits<result_type>::max(); }
71 
72  void reset() {}
73 
74  private:
75  template <typename RNGType>
76  result_type generate(RNGType &rng, const param_type &param)
77  {
79  result_type u = u01(rng) - static_cast<result_type>(0.5);
80 
81  return u > 0 ? param.a() - param.b() * std::log(1 - 2 * u) :
82  param.a() + param.b() * std::log(1 + 2 * u);
83  }
84 }; // class LaplaceDistribution
85 
86 namespace internal
87 {
88 
89 template <std::size_t K, typename RealType, typename RNGType>
91  RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
92 {
94  u01_oo_distribution(rng, n, r);
95  sub(n, r, static_cast<RealType>(0.5), r);
96  for (std::size_t i = 0; i != n; ++i) {
97  if (r[i] > 0) {
98  r[i] = 1 - 2 * r[i];
99  s[i] = -b;
100  } else {
101  r[i] = 1 + 2 * r[i];
102  s[i] = b;
103  }
104  }
105  log(n, r, r);
106  fma(n, s.data(), r, a, r);
107 }
108 
109 } // namespace vsmc::internal
110 
114 VSMC_DEFINE_RNG_DISTRIBUTION_RAND_2(Laplace, laplace, a, b)
115 
116 } // namespace vsmc
117 
118 #endif // VSMC_RNG_LAPLACE_DISTRIBUTION_HPP
Definition: monitor.hpp:48
bool laplace_distribution_check_param(RealType, RealType b)
#define VSMC_DEFINE_RNG_DISTRIBUTION_2(Name, name, p1, v1, p2, v2)
#define VSMC_DEFINE_RNG_DISTRIBUTION_IMPL_2(name, p1, p2)
void u01_oo_distribution(RNGType &rng, std::size_t n, RealType *r)
Generate standard uniform random variates on (0, 1)
Standard uniform distribution on (0, 1)
RealType u01(UIntType u) noexcept
Convert uniform unsigned integers to floating points within [0, 1].
Definition: u01.hpp:213
#define VSMC_DEFINE_RNG_DISTRIBUTION_MEMBER_0
void laplace_distribution_impl(RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
void sub(std::size_t n, const float *a, const float *b, float *y)
Definition: vmath.hpp:75
void fma(std::size_t n, const T *a, const T *b, const T *c, T *y)
For , compute .
Definition: vmath.hpp:361
#define VSMC_DEFINE_RNG_DISTRIBUTION_RAND_2(Name, name, p1, p2)
std::array with proper alignment
void log(std::size_t n, const float *a, float *y)
Definition: vmath.hpp:117