vSMC  v3.0.0
Scalable Monte Carlo
weibull_distribution.hpp
Go to the documentation of this file.
1 //============================================================================
2 // vSMC/include/vsmc/rng/weibull_distribution.hpp
3 //----------------------------------------------------------------------------
4 // vSMC: Scalable Monte Carlo
5 //----------------------------------------------------------------------------
6 // Copyright (c) 2013-2016, Yan Zhou
7 // All rights reserved.
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are met:
11 //
12 // Redistributions of source code must retain the above copyright notice,
13 // this list of conditions and the following disclaimer.
14 //
15 // Redistributions in binary form must reproduce the above copyright notice,
16 // this list of conditions and the following disclaimer in the documentation
17 // and/or other materials provided with the distribution.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS
20 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 // POSSIBILITY OF SUCH DAMAGE.
30 //============================================================================
31 
32 #ifndef VSMC_RNG_WEIBULL_DISTRIBUTION_HPP
33 #define VSMC_RNG_WEIBULL_DISTRIBUTION_HPP
34 
38 
39 namespace vsmc
40 {
41 
42 namespace internal
43 {
44 
45 template <typename RealType>
46 inline bool weibull_distribution_check_param(RealType a, RealType b)
47 {
48  return a > 0 && b > 0;
49 }
50 
51 } // namespace vsmc::internal
52 
55 template <typename RealType>
57 {
58  VSMC_DEFINE_RNG_DISTRIBUTION_2(Weibull, weibull, a, 1, b, 1)
60 
61  public:
62  result_type min() const { return 0; }
63 
64  result_type max() const { return std::numeric_limits<result_type>::max(); }
65 
66  void reset() {}
67 
68  private:
69  template <typename RNGType>
70  result_type generate(RNGType &rng, const param_type &param)
71  {
73 
74  return internal::is_one(param.a()) ?
75  -param.b() * std::log(u01(rng)) :
76  param.b() * std::pow(-std::log(u01(rng)), 1 / param.a());
77  }
78 }; // class WeibullDistribution
79 
80 namespace internal
81 {
82 
83 template <std::size_t, typename RealType, typename RNGType>
85  RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
86 {
87  u01_oo_distribution(rng, n, r);
88  log(n, r, r);
89  if (is_one(a)) {
90  mul(n, -b, r, r);
91  } else {
92  mul(n, static_cast<RealType>(-1), r, r);
93  pow(n, r, 1 / a, r);
94  mul(n, b, r, r);
95  }
96 }
97 
98 } // namespace vsmc::internal
99 
103 VSMC_DEFINE_RNG_DISTRIBUTION_RAND_2(Weibull, weibull, a, b)
104 
105 } // namespace vsmc
106 
107 #endif // VSMC_RNG_WEIBULL_DISTRIBUTION_HPP
Definition: monitor.hpp:48
void mul(std::size_t n, const float *a, const float *b, float *y)
Definition: vmath.hpp:77
bool weibull_distribution_check_param(RealType a, RealType b)
#define VSMC_DEFINE_RNG_DISTRIBUTION_2(Name, name, p1, v1, p2, v2)
#define VSMC_DEFINE_RNG_DISTRIBUTION_IMPL_2(name, p1, p2)
void u01_oo_distribution(RNGType &rng, std::size_t n, RealType *r)
Generate standard uniform random variates on (0, 1)
void weibull_distribution_impl(RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
Standard uniform distribution on (0, 1)
void pow(std::size_t n, const float *a, const float *b, float *y)
Definition: vmath.hpp:102
RealType u01(UIntType u) noexcept
Convert uniform unsigned integers to floating points within [0, 1].
Definition: u01.hpp:213
#define VSMC_DEFINE_RNG_DISTRIBUTION_MEMBER_0
bool is_one(const T &a)
Definition: basic.hpp:107
#define VSMC_DEFINE_RNG_DISTRIBUTION_RAND_2(Name, name, p1, p2)
void log(std::size_t n, const float *a, float *y)
Definition: vmath.hpp:117