vSMC
vSMC: Scalable Monte Carlo
laplace_distribution.hpp
Go to the documentation of this file.
1 //============================================================================
2 // vSMC/include/vsmc/rng/laplace_distribution.hpp
3 //----------------------------------------------------------------------------
4 // vSMC: Scalable Monte Carlo
5 //----------------------------------------------------------------------------
6 // Copyright (c) 2013-2016, Yan Zhou
7 // All rights reserved.
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are met:
11 //
12 // Redistributions of source code must retain the above copyright notice,
13 // this list of conditions and the following disclaimer.
14 //
15 // Redistributions in binary form must reproduce the above copyright notice,
16 // this list of conditions and the following disclaimer in the documentation
17 // and/or other materials provided with the distribution.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS
20 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 // POSSIBILITY OF SUCH DAMAGE.
30 //============================================================================
31 
32 #ifndef VSMC_RNG_LAPLACE_DISTRIBUTION_HPP
33 #define VSMC_RNG_LAPLACE_DISTRIBUTION_HPP
34 
37 
38 #define VSMC_RUNTIME_ASSERT_RNG_LAPLACE_DISTRIBUTION_PARAM_CHECK(b) \
39  VSMC_RUNTIME_ASSERT((b > 0), "**LaplaceDistribution** CONSTRUCTED " \
40  "WITH INVALID SCALE PARAMETER VALUE")
41 
42 namespace vsmc
43 {
44 
45 namespace internal
46 {
47 
48 template <typename RealType>
49 inline bool laplace_distribution_check_param(RealType, RealType b)
50 {
51  return b > 0;
52 }
53 
54 } // namespace vsmc::internal
55 
58 template <typename RealType>
60 {
61  VSMC_DEFINE_RNG_DISTRIBUTION_2(Laplace, laplace, a, 0, b, 1)
62 
63  public:
64  result_type min() const
65  {
66  return std::numeric_limits<result_type>::lowest();
67  }
68 
69  result_type max() const { return std::numeric_limits<result_type>::max(); }
70 
71  void reset() {}
72 
73  private:
74  template <typename RNGType>
75  result_type generate(RNGType &rng, const param_type &param)
76  {
78  result_type u = u01(rng) - static_cast<result_type>(0.5);
79 
80  return u > 0 ? param.a() - param.b() * std::log(1 - 2 * u) :
81  param.a() + param.b() * std::log(1 + 2 * u);
82  }
83 }; // class LaplaceDistribution
84 
85 namespace internal
86 {
87 
88 template <std::size_t K, typename RealType, typename RNGType>
90  RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
91 {
92  RealType s[K];
93  u01_distribution(rng, n, r);
94  sub(n, r, static_cast<RealType>(0.5), r);
95  for (std::size_t i = 0; i != n; ++i) {
96  if (r[i] > 0) {
97  r[i] = 1 - 2 * r[i];
98  s[i] = -b;
99  } else {
100  r[i] = 1 + 2 * r[i];
101  s[i] = b;
102  }
103  }
104  log(n, r, r);
105  fma(n, s, r, a, r);
106 }
107 
108 } // namespace vsmc::internal
109 
112 template <typename RealType, typename RNGType>
114  RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
115 {
116  static_assert(std::is_floating_point<RealType>::value,
117  "**laplace_distribution** USED WITH RealType OTHER THAN FLOATING "
118  "POINT TYPES");
119 
120  const std::size_t k = 1024;
121  const std::size_t m = n / k;
122  const std::size_t l = n % k;
123  for (std::size_t i = 0; i != m; ++i, r += k)
124  internal::laplace_distribution_impl<k>(rng, k, r, a, b);
125  internal::laplace_distribution_impl<k>(rng, l, r, a, b);
126 }
127 
128 VSMC_DEFINE_RNG_DISTRIBUTION_RAND_2(Laplace, laplace, a, b)
129 
130 } // namespace vsmc
131 
132 #endif // VSMC_RNG_LAPLACE_DISTRIBUTION_HPP
Definition: monitor.hpp:49
bool laplace_distribution_check_param(RealType, RealType b)
#define VSMC_DEFINE_RNG_DISTRIBUTION_2(Name, name, p1, v1, p2, v2)
Definition: common.hpp:374
void laplace_distribution(RNGType &, std::size_t, RealType *, RealType, RealType)
Generating laplace random variates.
void u01_distribution(RNGType &, std::size_t, RealType *)
Generate standard uniform random variates.
void laplace_distribution_impl(RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
void sub(std::size_t n, const float *a, const float *b, float *y)
Definition: vmath.hpp:110
void fma(std::size_t n, const T *a, const T *b, const T *c, T *y)
For , compute .
Definition: vmath.hpp:257
Standard uniform distribution.
Definition: common.hpp:597
#define VSMC_DEFINE_RNG_DISTRIBUTION_RAND_2(Name, name, p1, p2)
Definition: common.hpp:409
void log(std::size_t n, const float *a, float *y)
Definition: vmath.hpp:148
Laplace distribution.
Definition: common.hpp:570