vSMC
vSMC: Scalable Monte Carlo
extreme_value_distribution.hpp
Go to the documentation of this file.
1 //============================================================================
2 // vSMC/include/vsmc/rng/extreme_value_distribution.hpp
3 //----------------------------------------------------------------------------
4 // vSMC: Scalable Monte Carlo
5 //----------------------------------------------------------------------------
6 // Copyright (c) 2013-2015, Yan Zhou
7 // All rights reserved.
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are met:
11 //
12 // Redistributions of source code must retain the above copyright notice,
13 // this list of conditions and the following disclaimer.
14 //
15 // Redistributions in binary form must reproduce the above copyright notice,
16 // this list of conditions and the following disclaimer in the documentation
17 // and/or other materials provided with the distribution.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS
20 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 // POSSIBILITY OF SUCH DAMAGE.
30 //============================================================================
31 
32 #ifndef VSMC_RNG_EXTREME_VALUE_DISTRIBUTION_HPP
33 #define VSMC_RNG_EXTREME_VALUE_DISTRIBUTION_HPP
34 
37 
38 namespace vsmc
39 {
40 
41 namespace internal
42 {
43 
44 template <typename RealType>
45 inline bool extreme_value_distribution_check_param(RealType, RealType b)
46 {
47  return b > 0;
48 }
49 
50 } // namespace vsmc::internal
51 
54 template <typename RealType>
56 {
57  VSMC_DEFINE_RNG_DISTRIBUTION_2(ExtremeValue, extreme_value, RealType,
58  result_type, a, 0, result_type, b, 1)
60 
61  public:
62  result_type min VSMC_MNE() const
63  {
64  return -std::numeric_limits<result_type>::max VSMC_MNE();
65  }
66 
67  result_type max VSMC_MNE() const
68  {
69  return std::numeric_limits<result_type>::max VSMC_MNE();
70  }
71 
72  void reset() {}
73 
74  private:
75  template <typename RNGType>
76  result_type generate(RNGType &rng, const param_type &param)
77  {
79 
80  return param.a() - param.b() * std::log(-std::log(runif(rng)));
81  }
82 }; // class ExtremeValueDistribution
83 
84 namespace internal
85 {
86 
87 template <typename RealType, typename RNGType>
89  RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
90 {
91  u01_oo_distribution(rng, n, r);
92  log(n, r, r);
93  mul(n, static_cast<RealType>(-1), r, r);
94  log(n, r, r);
95  fma(n, -b, r, a, r);
96 }
97 
98 } // namespace vsmc::internal
99 
102 template <typename RealType, typename RNGType>
104  RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
105 {
106  const std::size_t k = 1000;
107  const std::size_t m = n / k;
108  const std::size_t l = n % k;
109  for (std::size_t i = 0; i != m; ++i)
110  internal::extreme_value_distribution_impl(rng, k, r + i * k, a, b);
111  internal::extreme_value_distribution_impl(rng, l, r + m * k, a, b);
112 }
113 
114 template <typename RealType, typename RNGType>
115 inline void rng_rand(RNGType &rng, ExtremeValueDistribution<RealType> &dist,
116  std::size_t n, RealType *r)
117 {
118  dist(rng, n, r);
119 }
120 
121 } // namespace vsmc
122 
123 #endif // VSMC_RNG_EXTREME_VALUE_DISTRIBUTION_HPP
Definition: monitor.hpp:49
Standard uniform distribution with open/closed variants.
Definition: common.hpp:512
void mul(std::size_t n, const float *a, const float *b, float *y)
Definition: vmath.hpp:112
void extreme_value_distribution_impl(RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
void u01_oo_distribution(RNGType &rng, std::size_t n, RealType *r)
Generate standard uniform random variates on open-open interval.
void rng_rand(RNGType &rng, BernoulliDistribution< IntType > &dist, std::size_t n, IntType *r)
#define VSMC_DEFINE_RNG_DISTRIBUTION_OPERATORS
Definition: common.hpp:286
#define VSMC_DEFINE_RNG_DISTRIBUTION_2(Name, name, T, T1, p1, v1, T2, p2, v2)
Definition: common.hpp:159
#define VSMC_MNE
Definition: defines.hpp:38
void extreme_value_distribution(RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
Generating extreme_value random variates.
void fma(std::size_t n, const T *a, const T *b, const T *c, T *y)
For , compute .
Definition: vmath.hpp:257
void log(std::size_t n, const float *a, float *y)
Definition: vmath.hpp:148
bool extreme_value_distribution_check_param(RealType, RealType b)