vSMC
vSMC: Scalable Monte Carlo
fisher_f_distribution.hpp
Go to the documentation of this file.
1 //============================================================================
2 // vSMC/include/vsmc/rng/fisher_f_distribution.hpp
3 //----------------------------------------------------------------------------
4 // vSMC: Scalable Monte Carlo
5 //----------------------------------------------------------------------------
6 // Copyright (c) 2013-2015, Yan Zhou
7 // All rights reserved.
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are met:
11 //
12 // Redistributions of source code must retain the above copyright notice,
13 // this list of conditions and the following disclaimer.
14 //
15 // Redistributions in binary form must reproduce the above copyright notice,
16 // this list of conditions and the following disclaimer in the documentation
17 // and/or other materials provided with the distribution.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS
20 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 // POSSIBILITY OF SUCH DAMAGE.
30 //============================================================================
31 
32 #ifndef VSMC_RNG_FISHER_F_DISTRIBUTION_HPP
33 #define VSMC_RNG_FISHER_F_DISTRIBUTION_HPP
34 
37 
38 namespace vsmc
39 {
40 
41 namespace internal
42 {
43 
44 template <typename RealType>
45 inline bool fisher_f_distribution_check_param(RealType m, RealType n)
46 {
47  return m > 0 && n > 0;
48 }
49 
50 } // namespace vsmc::internal
51 
54 template <typename RealType>
56 {
58  FisherF, fisher_f, RealType, result_type, m, 1, result_type, n, 1)
60 
61  public:
62  result_type min VSMC_MNE() const { return 0; }
63 
64  result_type max VSMC_MNE() const
65  {
66  return std::numeric_limits<result_type>::max VSMC_MNE();
67  }
68 
69  void reset()
70  {
71  chi_squared_m_ = ChiSquaredDistribution<RealType>(m());
72  chi_squared_n_ = ChiSquaredDistribution<RealType>(n());
73  }
74 
75  private:
76  ChiSquaredDistribution<RealType> chi_squared_m_;
77  ChiSquaredDistribution<RealType> chi_squared_n_;
78 
79  template <typename RNGType>
80  result_type generate(RNGType &rng, const param_type &param)
81  {
82  if (param == param_)
83  return (chi_squared_m_(rng) / m()) / (chi_squared_n_(rng) / n());
84 
85  ChiSquaredDistribution<RealType> chi_squared_m(param.m());
86  ChiSquaredDistribution<RealType> chi_squared_n(param.n());
87 
88  return (chi_squared_m(rng) / param.m()) /
89  (chi_squared_n(rng) / param.n());
90  }
91 }; // class FisherFDistribution
92 
93 namespace internal
94 {
95 
96 template <std::size_t K, typename RealType, typename RNGType>
98  RNGType &rng, std::size_t n, RealType *r, RealType df1, RealType df2)
99 {
100  RealType s[K];
101  chi_squared_distribution(rng, n, s, df1);
102  chi_squared_distribution(rng, n, r, df2);
103  mul(n, 1 / df1, s, s);
104  mul(n, 1 / df2, r, r);
105  div(n, s, r, r);
106 }
107 
108 } // namespace vsmc::internal
109 
112 template <typename RealType, typename RNGType>
114  RNGType &rng, std::size_t n, RealType *r, RealType df1, RealType df2)
115 {
116  const std::size_t k = 1000;
117  const std::size_t m = n / k;
118  const std::size_t l = n % k;
119  for (std::size_t i = 0; i != m; ++i)
120  internal::fisher_f_distribution_impl<k>(rng, k, r + i * k, df1, df2);
121  internal::fisher_f_distribution_impl<k>(rng, l, r + m * k, df1, df2);
122 }
123 
124 template <typename RealType, typename RNGType>
125 inline void rng_rand(RNGType &rng, FisherFDistribution<RealType> &dist,
126  std::size_t n, RealType *r)
127 {
128  dist(rng, n, r);
129 }
130 
131 } // namespace vsmc
132 
133 #endif // VSMC_RNG_FISHER_F_DISTRIBUTION_HPP
bool fisher_f_distribution_check_param(RealType m, RealType n)
Definition: monitor.hpp:49
void mul(std::size_t n, const float *a, const float *b, float *y)
Definition: vmath.hpp:112
void rng_rand(RNGType &rng, BernoulliDistribution< IntType > &dist, std::size_t n, IntType *r)
#define VSMC_DEFINE_RNG_DISTRIBUTION_OPERATORS
Definition: common.hpp:286
#define VSMC_DEFINE_RNG_DISTRIBUTION_2(Name, name, T, T1, p1, v1, T2, p2, v2)
Definition: common.hpp:159
#define VSMC_MNE
Definition: defines.hpp:38
void div(std::size_t n, const float *a, const float *b, float *y)
Definition: vmath.hpp:128
void chi_squared_distribution(RNGType &rng, std::size_t n, RealType *r, RealType df)
Generating random variates.
void fisher_f_distribution(RNGType &rng, std::size_t n, RealType *r, RealType df1, RealType df2)
Generating Fisher-F random variates.
void fisher_f_distribution_impl(RNGType &rng, std::size_t n, RealType *r, RealType df1, RealType df2)