vSMC
vSMC: Scalable Monte Carlo
weibull_distribution.hpp
Go to the documentation of this file.
1 //============================================================================
2 // vSMC/include/vsmc/rng/weibull_distribution.hpp
3 //----------------------------------------------------------------------------
4 // vSMC: Scalable Monte Carlo
5 //----------------------------------------------------------------------------
6 // Copyright (c) 2013-2015, Yan Zhou
7 // All rights reserved.
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are met:
11 //
12 // Redistributions of source code must retain the above copyright notice,
13 // this list of conditions and the following disclaimer.
14 //
15 // Redistributions in binary form must reproduce the above copyright notice,
16 // this list of conditions and the following disclaimer in the documentation
17 // and/or other materials provided with the distribution.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS
20 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 // POSSIBILITY OF SUCH DAMAGE.
30 //============================================================================
31 
32 #ifndef VSMC_RNG_WEIBULL_DISTRIBUTION_HPP
33 #define VSMC_RNG_WEIBULL_DISTRIBUTION_HPP
34 
38 
39 namespace vsmc
40 {
41 
42 namespace internal
43 {
44 
45 template <typename RealType>
46 inline bool weibull_distribution_check_param(RealType a, RealType b)
47 {
48  return a > 0 && b > 0;
49 }
50 
51 } // namespace vsmc::internal
52 
55 template <typename RealType>
57 {
59  Weibull, weibull, RealType, result_type, a, 1, result_type, b, 1)
61 
62  public:
63  result_type min VSMC_MNE() const { return 0; }
64 
65  result_type max VSMC_MNE() const
66  {
67  return std::numeric_limits<result_type>::max VSMC_MNE();
68  }
69 
70  void reset() {}
71 
72  private:
73  template <typename RNGType>
74  result_type generate(RNGType &rng, const param_type &param)
75  {
77 
78  return param.b() *
79  std::exp((1 / param.a()) * std::log(-std::log(runif(rng))));
80  }
81 }; // class WeibullDistribution
82 
83 namespace internal
84 {
85 
86 template <typename RealType, typename RNGType>
88  RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
89 {
90  u01_oo_distribution(rng, n, r);
91  log(n, r, r);
92  if (is_equal<RealType>(a, 1)) {
93  mul(n, -b, r, r);
94  } else {
95  mul(n, static_cast<RealType>(-1), r, r);
96  log(n, r, r);
97  mul(n, 1 / a, r, r);
98  exp(n, r, r);
99  mul(n, b, r, r);
100  }
101 }
102 
103 } // namespace vsmc::internal
104 
107 template <typename RealType, typename RNGType>
109  RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
110 {
111  const std::size_t k = 1000;
112  const std::size_t m = n / k;
113  const std::size_t l = n % k;
114  for (std::size_t i = 0; i != m; ++i)
115  internal::weibull_distribution_impl(rng, k, r + i * k, a, b);
116  internal::weibull_distribution_impl(rng, l, r + m * k, a, b);
117 }
118 
119 template <typename RealType, typename RNGType>
120 inline void rng_rand(RNGType &rng, WeibullDistribution<RealType> &dist,
121  std::size_t n, RealType *r)
122 {
123  dist(rng, n, r);
124 }
125 
126 } // namespace vsmc
127 
128 #endif // VSMC_RNG_WEIBULL_DISTRIBUTION_HPP
Definition: monitor.hpp:49
Standard uniform distribution with open/closed variants.
Definition: common.hpp:512
void mul(std::size_t n, const float *a, const float *b, float *y)
Definition: vmath.hpp:112
bool weibull_distribution_check_param(RealType a, RealType b)
void u01_oo_distribution(RNGType &rng, std::size_t n, RealType *r)
Generate standard uniform random variates on open-open interval.
void rng_rand(RNGType &rng, BernoulliDistribution< IntType > &dist, std::size_t n, IntType *r)
void weibull_distribution_impl(RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
#define VSMC_DEFINE_RNG_DISTRIBUTION_OPERATORS
Definition: common.hpp:286
#define VSMC_DEFINE_RNG_DISTRIBUTION_2(Name, name, T, T1, p1, v1, T2, p2, v2)
Definition: common.hpp:159
#define VSMC_MNE
Definition: defines.hpp:38
void exp(std::size_t n, const float *a, float *y)
Definition: vmath.hpp:146
void weibull_distribution(RNGType &, std::size_t, RealType *, RealType, RealType)
Generating weibull random variates.
Weibull distribution.
Definition: common.hpp:518
void log(std::size_t n, const float *a, float *y)
Definition: vmath.hpp:148