vSMC
vSMC: Scalable Monte Carlo
laplace_distribution.hpp
Go to the documentation of this file.
1 //============================================================================
2 // vSMC/include/vsmc/rng/laplace_distribution.hpp
3 //----------------------------------------------------------------------------
4 // vSMC: Scalable Monte Carlo
5 //----------------------------------------------------------------------------
6 // Copyright (c) 2013-2015, Yan Zhou
7 // All rights reserved.
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are met:
11 //
12 // Redistributions of source code must retain the above copyright notice,
13 // this list of conditions and the following disclaimer.
14 //
15 // Redistributions in binary form must reproduce the above copyright notice,
16 // this list of conditions and the following disclaimer in the documentation
17 // and/or other materials provided with the distribution.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS
20 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 // POSSIBILITY OF SUCH DAMAGE.
30 //============================================================================
31 
32 #ifndef VSMC_RNG_LAPLACE_DISTRIBUTION_HPP
33 #define VSMC_RNG_LAPLACE_DISTRIBUTION_HPP
34 
37 
38 #define VSMC_RUNTIME_ASSERT_RNG_LAPLACE_DISTRIBUTION_PARAM_CHECK(b) \
39  VSMC_RUNTIME_ASSERT((b > 0), "**LaplaceDistribution** CONSTRUCTED " \
40  "WITH INVALID SCALE PARAMETER VALUE")
41 
42 namespace vsmc
43 {
44 
45 namespace internal
46 {
47 
48 template <typename RealType>
49 inline bool laplace_distribution_check_param(RealType, RealType b)
50 {
51  return b > 0;
52 }
53 
54 } // namespace vsmc::internal
55 
58 template <typename RealType>
60 {
62  Laplace, laplace, RealType, result_type, a, 0, result_type, b, 1)
64 
65  public:
66  result_type min VSMC_MNE() const
67  {
68  return -std::numeric_limits<result_type>::max VSMC_MNE();
69  }
70 
71  result_type max VSMC_MNE() const
72  {
73  return std::numeric_limits<result_type>::max VSMC_MNE();
74  }
75 
76  void reset() {}
77 
78  private:
79  template <typename RNGType>
80  result_type generate(RNGType &rng, const param_type &param)
81  {
83  result_type u = runif(rng) - static_cast<result_type>(0.5);
84 
85  return u > 0 ? param.a() - param.b() * std::log(1 - 2 * u) :
86  param.a() + param.b() * std::log(1 + 2 * u);
87  }
88 }; // class LaplaceDistribution
89 
90 namespace internal
91 {
92 
93 template <std::size_t K, typename RealType, typename RNGType>
95  RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
96 {
97  RealType s[K];
98  u01_oc_distribution(rng, n, r);
99  sub(n, r, static_cast<RealType>(0.5), r);
100  for (std::size_t i = 0; i != n; ++i) {
101  if (r[i] > 0) {
102  r[i] = 1 - 2 * r[i];
103  s[i] = -b;
104  } else {
105  r[i] = 1 + 2 * r[i];
106  s[i] = b;
107  }
108  }
109  log(n, r, r);
110  fma(n, s, r, a, r);
111 }
112 
113 } // namespace vsmc::internal
114 
117 template <typename RealType, typename RNGType>
119  RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
120 {
121  const std::size_t k = 1000;
122  const std::size_t m = n / k;
123  const std::size_t l = n % k;
124  for (std::size_t i = 0; i != m; ++i)
125  internal::laplace_distribution_impl<k>(rng, k, r + i * k, a, b);
126  internal::laplace_distribution_impl<k>(rng, l, r + m * k, a, b);
127 }
128 
129 template <typename RealType, typename RNGType>
130 inline void rng_rand(RNGType &rng, LaplaceDistribution<RealType> &dist,
131  std::size_t n, RealType *r)
132 {
133  dist(rng, n, r);
134 }
135 
136 } // namespace vsmc
137 
138 #endif // VSMC_RNG_LAPLACE_DISTRIBUTION_HPP
Definition: monitor.hpp:49
Standard uniform distribution with open/closed variants.
Definition: common.hpp:512
bool laplace_distribution_check_param(RealType, RealType b)
void laplace_distribution(RNGType &, std::size_t, RealType *, RealType, RealType)
Generating laplace random variates.
void rng_rand(RNGType &rng, BernoulliDistribution< IntType > &dist, std::size_t n, IntType *r)
#define VSMC_DEFINE_RNG_DISTRIBUTION_OPERATORS
Definition: common.hpp:286
#define VSMC_DEFINE_RNG_DISTRIBUTION_2(Name, name, T, T1, p1, v1, T2, p2, v2)
Definition: common.hpp:159
#define VSMC_MNE
Definition: defines.hpp:38
void laplace_distribution_impl(RNGType &rng, std::size_t n, RealType *r, RealType a, RealType b)
void sub(std::size_t n, const float *a, const float *b, float *y)
Definition: vmath.hpp:110
void fma(std::size_t n, const T *a, const T *b, const T *c, T *y)
For , compute .
Definition: vmath.hpp:257
void u01_oc_distribution(RNGType &rng, std::size_t n, RealType *r)
Generate standard uniform random variates on open-closed interval.
void log(std::size_t n, const float *a, float *y)
Definition: vmath.hpp:148
Laplace distribution.
Definition: common.hpp:488